
Negative-Free Self-Supervised Gaussian Embedding of Graphs

Yunhui Liua, Tieke Hea,∗, Tao Zhenga, Jianhua Zhaoa

aState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China

Abstract

Graph Contrastive Learning (GCL) has recently emerged as a promising graph self-supervised learning framework for learning dis-
criminative node representations without labels. The widely adopted objective function of GCL benefits from two key properties:
alignment and uniformity, which align representations of positive node pairs while uniformly distributing all representations on the
hypersphere. The uniformity property plays a critical role in preventing representation collapse and is achieved by pushing apart
augmented views of different nodes (negative pairs). As such, existing GCL methods inherently rely on increasing the quantity and
quality of negative samples, resulting in heavy computational demands, memory overhead, and potential class collision issues. In
this study, we propose a negative-free objective to achieve uniformity, inspired by the fact that points distributed according to a
normalized isotropic Gaussian are uniformly spread across the unit hypersphere. Therefore, we can minimize the distance between
the distribution of learned representations and the isotropic Gaussian distribution to promote the uniformity of node representa-
tions. Our method also distinguishes itself from other approaches by eliminating the need for a parameterized mutual information
estimator, an additional projector, asymmetric structures, and, crucially, negative samples. Extensive experiments over seven graph
benchmarks demonstrate that our proposal achieves competitive performance with fewer parameters, shorter training times, and
lower memory consumption compared to existing GCL methods.

Keywords: Graph Neural Networks, Graph Representation Learning, Self-Supervised Learning, Graph Data Mining

1. Introduction

One of the current main bottlenecks in graph machine learn-
ing is the dependence on heavy annotated training data. Learn-
ing representations on graphs without manual labels offers
considerable advantages, as highlighted in recent literature
[1, 2]. Against this backdrop, Graph Self-Supervised Learn-
ing (GSSL) has emerged as a pivotal methodology, addressing
this critical need. GSSL demonstrates capabilities that are on
par with, or in some cases, surpass those of supervised learning
methods, as evidenced by studies such as [3, 4, 5, 6, 7, 8, 9, 10].
Central to the GSSL approach is pre-training, which utilizes
meticulously designed pretext objectives. These objectives are
task-agnostic, enabling the optimization process to yield rep-
resentations that are not only general and meaningful but also
transferable across various downstream applications.

As a prominent branch of the GSSL family, graph contrastive
learning (GCL) [4, 11, 12, 13, 14, 15] has demonstrated re-
markable performance and garnered widespread interest. GCL
methods focus on learning node representations by creating two
augmented views of the input graph and maximizing the mu-
tual information between the encoded representations. Wang
and Isola [16] offer an intuitive and theoretical understanding
of contrastive learning, emphasizing alignment and uniformity
on the hypersphere. Alignment, i.e., pulling together positive

∗Corresponding author
Email addresses: lyhcloudy1225@gmail.com (Yunhui Liu),

hetieke@gmail.com (Tieke He)

pairs, ensures that samples forming positive pairs are mapped
to nearby representations, thus rendering them invariant to ir-
relevant noise factors. However, relying solely on alignment
could lead to complete collapse, where all representations con-
verge to a single point [17]. In such cases, the learned rep-
resentations may exhibit optimal alignment but fail to provide
meaningful information for downstream tasks. Uniformity as-
sesses how representations are uniformly distributed across the
hypersphere, with higher uniformity indicating that more infor-
mation is preserved in the learned representations. Therefore,
uniformity plays a pivotal role in alleviating complete collapse
and generating discriminative representations [16].

However, existing GCL methods achieve uniformity by
pushing apart augmented views of different nodes (negative
pairs). As such, they inherently rely on both the quantity and
quality of negative samples. This reliance results in substantial
computational and memory overhead, as well as class collision,
where different samples from the same class are inaccurately
deemed negative pairs, thereby impeding representation learn-
ing [18, 19]. To address these issues, recent self-supervised
methods [20, 19, 21, 22] have explored the prospect of learn-
ing without negative samples. Specifically, CCA-SSG [20] and
G-BT [21] learn augmentation-invariant information while in-
troducing feature decorrelation to capture orthogonal features
and prevent model collapse. However, they may not work well
on datasets with low feature dimensions, as they essentially per-
form dimension reduction. BGRL [19] and AFGRL [22] intro-
duce an online network along with a target network to avoid
collapse. But they require additional components, e.g., an ex-

Preprint submitted to Neural Networks November 2, 2024

ponential moving average (EMA) and Stop-Gradient, leading
to a more intricate architecture.

Different from prior works on contrastive learning, we pro-
pose Negative-Free Self-Supervised Gaussian Embedding of
Graphs (SSGE), a simple yet effective approach that introduces
a new negative-free self-supervised learning objective while lib-
erating the model from intricate designs. Following established
practices, SSGE generates two views of an input graph through
random augmentation and obtains node representations via a
shared Graph Neural Network (GNN) encoder. Moreover, our
contribution lies in proposing a negative-free self-supervised
learning objective. Specifically, this new objective seeks to
maximize the agreement between two augmented views of the
same input (alignment) while simultaneously minimizing the
distance between the distribution of learned representations and
the isotropic Gaussian distribution (uniformity). Our motivation
is grounded in the fact that the normalized isotropic Gaussian
distributed points are uniformly distributed on the unit hyper-
sphere. The proposed objective yields a simple and light model
without depending on negative pairs [4, 11, 12], a parameter-
ized mutual information estimator [3, 23], an additional projec-
tor [4, 11, 19, 22], or asymmetric architectures [19, 22, 24, 6].
Our model also works better on low-dimensional datasets than
other simple models [20, 21]. Extensive experiments on node
classification and node clustering demonstrate that our model
consistently achieves highly competitive performance. Further-
more, our method exhibits advantages such as fewer parame-
ters, shorter training times, and lower memory consumption
when compared to existing GCL methods. The implementa-
tion code is available at https://github.com/Cloudy1225/
SSGE. To sum up, our contributions are as follows:

• A negative-free uniformity objective is proposed, which is
inspired by the fact that points distributed according to a
normalized isotropic Gaussian are uniformly spread across
the unit hypersphere.

• The proposed objective liberates the self-supervised learn-
ing model from the reliance on negative samples and intri-
cate components, including a parameterized mutual infor-
mation estimator, an additional projector, or asymmetric
architectures.

• Extensive experiments across seven graph datasets and
two downstream tasks demonstrate that our model
achieves competitive performance with fewer parameters,
shorter training times, and lower memory consumption
than existing GCL methods.

2. Related Works

Recently, numerous research efforts have been devoted to
multi-view graph self-supervised learning, which optimizes
model parameters by ensuring consensus among multiple views
derived from the same sample under different graph augmenta-
tions [1]. A crucial aspect of these methods is the prevention
of trivial solutions, where all representations converge either to
a constant point (i.e., complete collapse) or to a subspace (i.e.,

dimensional collapse). The existing methods can be broadly
classified into two groups: contrastive and non-contrastive ap-
proaches, each delineated by its strategy for mitigating model
collapse.

Contrastive-based methods typically follow the criterion of
mutual information maximization [25], whose objective func-
tions involve contrasting positive pairs with negative ones. Pi-
oneering works, such as DGI [3] and GMI [26], focus on unsu-
pervised representation learning by maximizing mutual infor-
mation between node-level representations and a graph sum-
mary vector. MVGRL [23] proposes to learn both node-level
and graph-level representations by performing node diffusion
and contrasting node representations to augmented graph rep-
resentation. GRACE [4] and its variants like GCA [11], gCooL
[12], and COSTA [13] learn node representations by pulling to-
gether the representations of the same node (positive pairs) in
two augmented views while pushing away the representations
of the other nodes (negative pairs) in two views. AUAR [27]
aligns the representations of the node with itself and its clus-
ter centroid while maximizing the distance between nodes and
each cluster centroid. DirectCLR [28] directly optimizes the
representation space without relying on a trainable projector to
mitigate the dimensional collapse in contrastive learning.

Non-contrastive methods eliminate the use of negative sam-
ples and adopt different strategies to avoid collapsed solutions.
Distillation-based methods BGRL [19], AFGRL [22] introduce
an online network along with a target network, where the target
network is updated with a moving average of the online net-
work to avoid collapse. GraphALU [24] further captures the
uniformity by maximizing the distance between any nodes and
a virtual center node. RGRL [29] learns augmentation-invariant
relationship, which allows the node representations to vary as
long as the relationship among the nodes is preserved. Feature
decorrelation methods CCA-SSG [20] and G-BT [21] rely on
regularizing the empirical covariance matrix of the represen-
tations to capture orthogonal features and prevent dimensional
collapse. W-MSE [30] whitens and projects embeddings to the
unit sphere before maximizing cosine similarity between posi-
tive samples.

Although these methods have demonstrated impressive per-
formance, their reliance on intricate designs and architectures
is noteworthy. For example, DGI [3], GMI [26] and MVGRL
[23] rely on a parameterized Jensen-Shannon mutual informa-
tion estimator [31] for distinguishing positive node-graph pairs
from negative ones. GRACE [4], GCA [11], gCooL [12], and
COSTA [13] harness an additional MLP-projector to guaran-
tee sufficient capacity. Moreover, they necessitate a substan-
tial number of negative samples to prevent model collapse and
learn discriminative representations, making them suffer seri-
ously from heavy computation, memory overhead, and class
collision [18]. BGRL [19], AFGRL [22], and GraphALU [24]
require asymmetric encoders, an exponential moving average
and Stop-Gradient, to empirically avoid degenerated solutions,
resulting in a more complex architecture. CCA-SSG [20] and
G-BT [21] may exhibit suboptimal performance on datasets
where input data does not have a large feature dimension, as
they are essentially performing dimension reduction. In con-

2

https://github.com/Cloudy1225/SSGE
https://github.com/Cloudy1225/SSGE

trast, our method aims to make the distribution of learned repre-
sentations close to the isotropic Gaussian distribution to achieve
uniformity while aligning the representations of two views from
data augmentation.

3. Preliminary

3.1. Problem Statement
Let G = (V,E) represent an attributed graph, where V =

{v1, v2, · · · , vn} and E ⊆ V × V denote the node set and the
edge set, respectively. The graph G is associated with a feature
matrix X ∈ Rn×p, where xi ∈ Rp represents the feature of vi,
and an adjacency matrix A ∈ {0, 1}n×n, where Ai, j = 1 if and
only if (vi, v j) ∈ E. In the self-supervised training setting, no
task-specific labels are provided for G. The primary objective
is to learn an embedding function fθ(A, X) that transforms X to
Z, where Z ∈ Rn×d and d ≪ p. The pre-trained representations
aim to capture both attribute and structural information inherent
in G and are easily transferable to various downstream tasks,
such as node classification and node clustering.

3.2. Graph Convolutional Network
The Graph Convolutional Network (GCN) [32] is one of the

most popular graph neural networks. It is a layer-wise propaga-
tion rule-based model to learn the node representation zi ∈ Rd

corresponding to node vi. The formulation of the graph convo-
lutional layer can be expressed as:

Z(l+1) = σ
(
D̂
−1/2

ÂD̂
−1/2

Z(l)Θ(l)
)
, (1)

where Z(l+1) denotes the node representations at the l + 1
layer and Z(0) represents the original attribute matrix of nodes.
D̂
−1/2

ÂD̂
−1/2

is a symmetric normalization of A with self-loop,
Â = A+I. I and D̂ are the identity matrix and the diagonal node
degree matrix of Â, respectively. Additionally, Θ(l) represents
the weight matrix at the l-th layer, and σ denotes the activation
function. Consistent with previous works [3, 4, 20, 12, 5], we
adopt GCN as the foundational graph encoder.

3.3. Wasserstein Distance
Wasserstein distances are metrics quantifying the dissimilar-

ity between probability distributions, drawing inspiration from
the optimal transportation problem [33]. The p-Wasserstein
distance is formulated as follows:

Wp(Pr,Pg) =
(

inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ
[
∥x − y∥p

]) 1
p

, (2)

where Π(Pr,Pg) is the set of all joint distributions γ(x, y) whose
marginals are Pr and Pg, respectively. The term γ(x, y) intu-
itively indicates the amount of “mass” requiring transportation
from x to y for transforming the distribution Pr into Pg. The
Wasserstein distance thus represents the “cost” associated with
the optimal transport plan.

In the case of considering both distributions as multivari-
ate Gaussian distributions, i.e., Pr = N(µ1,Σ1) and Pg =

N(µ2,Σ2), with mean vectors µ1, µ2, and covariance matrices
Σ1, Σ2, respectively, the 2-Wasserstein distance has a closed
form expression given by

W2
2(Pr,Pg) = ∥µ1 − µ2∥

2
2 + Tr

(
Σ1 + Σ2 − 2

(
Σ

1
2
2Σ1Σ

1
2
2

) 1
2
)
, (3)

where Tr(·) denotes the trace of a matrix. This equation il-
lustrates that the 2-Wasserstein distance between two Gaussian
distributions can be easily computed.

4. Methodology

4.1. Model Framework

Our model is simply constructed with three key components:
1) a random graph augmentation generator T , 2) a GNN-based
graph encoder symbolized as fθ, where θ representing its pa-
rameters, and 3) a Gaussian distribution guided objective func-
tion. Figure 1 is an illustration of the proposed model.

4.1.1. Graph Augmentation
The augmentation of graph data is a critical component of

graph contrastive learning, as it generates diverse graph views,
resulting in more generalized representations that are robust
against variance. In this study, we jointly adopt two widely
utilized strategies, feature masking and edge dropping, to en-
hance graph attributes and topology information, respectively
[4, 11, 20, 19, 12].

Feature Masking. We randomly select a portion of the
node features’ dimensions and mask their elements with ze-
ros. Formally, we first sample a random vector m̃ ∈ {0, 1}F ,
where each dimension is drawn from a Bernoulli distribution
with probability 1 − pm, i.e., m̃i ∼ B(1 − pm),∀i. Then, the
masked node features X̃ are computed by ∥Ni=1 xi ⊙ m̃, where
⊙ denotes the Hadamard product and ∥ represents the stack op-
eration (i.e., concatenating a sequence of vectors along a new
dimension).

Edge Dropping. In addition to feature masking, we ran-
domly drop a certain fraction of edges from the original graph.
Formally, since we only remove existing edges, we first sample
a random masking matrix M̃ ∈ {0, 1}N×N , with entries drawn
from a Bernoulli distribution M̃i, j ∼ B(1 − pd) if Ai, j = 1 for
the original graph, and M̃i, j = 0 otherwise. Here, pd represents
the probability of each edge being dropped. The corrupted ad-
jacency matrix can then be computed as Ã = A ⊙ M̃.

4.1.2. Training and Inference
During each training epoch, we first select two random

augmentation functions, t1 ∼ T and t2 ∼ T , where T is
composed of all the possible graph transformation operations.
Subsequently, two different views, (Ã1, X̃1) = t1(A, X) and
(Ã2, X̃2) = t2(A, X), are generated based on the sampled func-
tions. These two augmented views are then fed into a shared
encoder fθ to extract the corresponding node representations:
Z1 = fθ(Ã1, X̃1) and Z2 = fθ(Ã2, X̃2). To facilitate subsequent
discussion, Z1 and Z2 are further batch-normalized so that each

3

GNN

GNN

𝑓𝜃

𝑡1~𝒯

𝑡2~𝒯

𝑨, 𝑿 𝒁1

𝒁2

ℒ𝑎𝑙𝑖

ℒ𝑢𝑛𝑖

ℒ𝑢𝑛𝑖

෩𝑨1, ෩𝑿1

෩𝑨2, ෩𝑿2

min 𝒲2
2 𝒩 𝟎, 𝚺 , 𝒩 𝟎, 𝑰𝑑

𝒩 𝟎, 𝑰𝑑

𝒩 𝟎, 𝚺1

𝒩 𝟎, 𝚺2

Figure 1: Overview of our proposed graph self-supervised learning framework SSGE. For a given attributed graph (A, X), we first generate two distinct views
(Ã1, X̃1), (Ã2, X̃2) through random augmentations t1, t2. These two views are subsequently fed into a shared GNN encoder fθ to extract batch-normalized node
representations Z1, Z2. The alignment lossLali and the uniformity lossLuni are applied on Z1, Z2. Here, Luni aims to minimize the 2-Wasserstein distance between
the distribution of learned representations and the isotropic Gaussian distribution N (0, Id).

representation channel in which obeys a distribution with zero-
mean and one-standard deviation. Finally, the model is opti-
mized using some self-supervised objectives, such as InfoNCE
[34] or our proposed objective defined in Eq. (15). After train-
ing, to obtain node representations for downstream tasks, the
original graph G = (A, X) is fed into the trained encoder fθ,
yielding Z = fθ(A, X).

4.2. Negative-Free Self-Supervised Loss

In this subsection, we first analyze the weakness of
contrastive-based self-supervised methods and then propose a
negative-free self-supervised loss.

4.2.1. Weakness of Graph Contrastive Learning
In most graph contrastive learning methods [4, 11, 12, 13],

both positive pairs and negative pairs are required for learning
a model. For instance, the widely adopted InfoNCE [34] loss
has the following formulation:

LIn f oNCE =

n∑
i=1

−z1
i · z

2
i /τ︸ ︷︷ ︸

alignment

+ log

∑
j

ez1
i ·z

2
j/τ

︸ ︷︷ ︸
uniformity

, (4)

where z1
i ∈ Rd and z2

i ∈ Rd are the (ℓ2-normalized) represen-
tations of two views of the same sample i, and τ is the tem-
perature hyperparameter. Minimizing Eq. (4) is equivalent to
maximizing the cosine similarity of two views of the same sam-
ple (alignment) and meanwhile minimizing the cosine similar-
ity of two views of different samples (uniformity). Intuitively,
the alignment term makes the positive pairs close to each other,
while the uniformity term distributes all samples roughly uni-
formly on the hypersphere Sd−1 [16]. Based on this analysis,

Wang and Isola [16] propose a uniformity metric by utilizing
the logarithm of the average pairwise Gaussian potential:

Luni f orm = log
1

n(n − 1)/2

n∑
i=2

i−1∑
j=1

e(−t∥zi−z j∥
2
2), t > 0. (5)

This uniformity metric is expected to be both asymptotically
correct (i.e., the distribution optimizing this metric should con-
verge to uniform distribution) and empirically reasonable with
a finite number of samples. However, both the uniformity term
in InfoNCE and this pairwise Gaussian potential based uni-
formity metric inherently rely on the large number and high
quality of negative samples. This reliance results in substan-
tial computational and memory overhead, as well as class col-
lision, where diverse samples from the same class are inaccu-
rately deemed negative pairs, thereby impeding representation
learning for classification [18, 19]. In this work, we introduce
a new negative-free uniformity objective derived from hyper-
spherical uniform distribution.

4.2.2. Uniformity from Isotropic Gaussian Distribution
We first show that zero-mean isotropic (equal-variance)

Gaussian distributed vectors (after normalized to norm 1) are
uniformly distributed over the unit hypersphere with the fol-
lowing theorem.

Theorem 1 (Hyperspherical Uniformity [35]). The normalized
vector of Gaussian variables is uniformly distributed on the hy-
persphere. Formally, let z1, z2, · · · , zd ∼ N(0, 1) and be inde-
pendent. Then the vector

z =
[z1

r
,

z2

r
, · · · ,

zd

r

]
(6)

follows the uniform distribution on Sd−1, where r =√
z2

1 + z2
2 + · · · + z2

d is a normalization factor.

4

Proof. A random variable has distribution N(0, 1) if it has the
density function

f (x) =
1
√

2π
e−

1
2 x2
. (7)

A d-dimensional random vector z has distribution N(0, Id) if
the components are independent and have distribution N(0, 1)
each. Then the density of z is given by

f (z) =
1

(
√

2π)d
e−

1
2 ⟨z,z⟩, (8)

where ⟨·, ·⟩ denotes the inner product. Then we introduce the
following lemma (Lemma 1) about the orthogonal-invariance
of the Gaussian distribution.

Lemma 1. Let z be a d-dimensional random vector with dis-
tribution N(0, Id) and U ∈ Rd×d be an orthogonal matrix
(UU⊤ = U⊤U = Id). Then Y = Uz also has the distribution of
N(0, Id).

Proof. For any measurable setA ⊂ Rd, we have that

P(Y ∈ A) = P(Z ∈ U⊤A)

=

∫
U⊤A

1

(
√

2π)d
e−

1
2 ⟨z,z⟩

=

∫
A

1

(
√

2π)d
e−

1
2 ⟨Uz,Uz⟩

=

∫
A

1

(
√

2π)d
e−

1
2 ⟨z,z⟩

(9)

because of orthogonality of U. Therefore the lemma holds.

Since any rotation is just a multiplication with some orthog-
onal matrix, we know that normally distributed random vectors
are invariant to rotation. As a result, generating z ∈ Rd with dis-
tribution N(0, Id) and then projecting it onto the hypersphere
Sd−1 produces random vectors z

∥z∥2 that are uniformly dis-
tributed on the hypersphere. Therefore the theorem holds.

The aforementioned theorem establishes an equivalence be-
tween the hyperspherical uniform distribution and the normal-
ized isotropic Gaussian distribution. Consequently, we can
utilize the distance between the distribution of learned repre-
sentations and the isotropic Gaussian distribution as a mea-
sure of uniformity. Specifically, given learned representations
Z ∈ Rn×d, we first apply batch normalization to ensure that
each representation channel follows a distribution with zero
mean and unit variance. To simplify computation, we adopt
a Gaussian hypothesis for the normalized representations and
assume they conform to N(0,Σ), where Σ = 1

n−1 Z⊤Z, and the
on-diagonal elements are 1. Building upon this assumption, we
employ the 2-Wasserstein distance, as defined in Eq. (3), to
quantify the disparity between the learned representation dis-
tribution N(0,Σ) and the target isotropic Gaussian distribution

N(0, Id) as the uniformity objective:

U(Z) =W2
2 (N(0,Σ),N(0, Id))

= ∥0 − 0∥22 + Tr
(
Σ + Id − 2

(
I

1
2
dΣI

1
2
d

) 1
2
)

= 2d − 2 Tr
(
Σ

1
2

)
.

(10)

Minimizing this uniformity objective promotes the proximity of
the learned representation distribution to the isotropic Gaussian
distribution, thereby enhancing the uniformity of the learned
representations. Consequently, for the representations Z1 and
Z2 associated with the two generated graph views during train-
ing, the expression for the uniformity loss is:

Luni =
1
2

(U(Z1) +U(Z2)).

= 2d − Tr
(
Σ

1
2
1

)
− Tr

(
Σ

1
2
2

)
,

(11)

where Σ1 =
1

n−1 Z1⊤Z1 and Σ2 =
1

n−1 Z2⊤Z2 are estimated co-
variance matrices of the two view representations.

4.2.3. Combining with the View Consistency Prior
Similar to the alignment term in contrastive learning objec-

tives, we try to maximize the correlation between two views
by minimizing the Euclidean distance between representations
derived from one sample:

Lali =
1
n
∥Z1 − Z2∥22. (12)

Since Z1 and Z2 are bath-normalized, ∥Z1 − Z2∥22 can be com-
puted by:

∥Z1 − Z2∥22 =

d∑
j

n∑
i

(
z1

i, j − z2
i, j

)2

=

d∑
j

n∑
i

((
(z1

i, j

)2
+

(
(z2

i, j

)2
− 2z1

i, jz
2
i, j

)

=

d∑
j

(
2 − 2

(
Z1
·, j

)⊤
Z2
·, j

)
=

(
2d − 2 Tr

(
Z1⊤Z2

))
.

(13)

For simplicity, we adopt the following equivalent form of Eq.
(12) as the implementation of our alignment loss:

Lali =
1
n

Tr
(
Z1⊤Z2

)
. (14)

The alignment loss promotes the mapping of different augmen-
tation views of the same sample to nearby representations, thus
enabling the model to learn representations invariant to un-
needed noise factors.

5

4.2.4. Overall Objective
Combining the uniformity loss and the alignment loss, we

formulate our overall objective as follows:

L = Lali + λLuni, (15)

where λ is a non-negative hyperparameter that balances the con-
tributions of the two terms.
Complexity Analysis. Consider a graph with n nodes, and
each node is embedded into a d-dimensional vector. The com-
putation of the alignment term Lali requires O(n) time and O(n)
space. The computation of Σ

1
2 in the uniformity termLuni is im-

plemented using eigenvalue decomposition, which takes O(d3)
time and O(d2) space, with typically d ≪ n. In contrast, con-
trastive learning methods [4, 11, 13, 5] treat two views of the
same node as positive pairs and views of different nodes as
negative pairs, incurring O(n2) time and O(n2) space. As a re-
sult, our negative-free method holds more promise for handling
large-scale graphs without incurring prohibitively high time and
space costs compared to contrastive learning methods.

Algorithm 1 The overall procedure of SSGE
Input: G = (A, X)
Parameter: Trade-off λ, Augmentor T
Output: The graph encoder fθ

1: Initialize model parameters;
2: while not converge do
3: Sample two augmentation functions t1, t2 ∼ T ;
4: Generate two augmented graphs via t1(A, X) and

t2(A, X);
5: Obtain batch-normalized node representations Z1 and

Z2 using fθ;
6: Compute the uniformity loss via Eq. 11;
7: Compute the alignment loss via Eq. 14;
8: Update the parameters of fθ by minimizing Eq. 15;
9: end while

10: return fθ.

Advantages over Peer Works Here we conduct a systematic
comparison with previous graph self-supervised learning meth-
ods, including DGI [3], MVGRL [23], GRACE [4], GCA [11],
BGRL [19], AFGRL [22], CCA-SSG [20], and G-BT [21]. In
brief, our SSGE stands out by mitigating reliance on negative
samples and intricate components. Specifically, DGI and MV-
GRL require a parameterized Jensen-Shannon estimator for ap-
proximating mutual information between two views. MVGRL
also introduces asymmetric architectures by employing two dif-
ferent GNNs for the input graph and the diffusion graph, respec-
tively. On the other hand, GRACE and GCA employ an addi-
tional MLP-projector followed by an InfoNCE mutual informa-
tion estimator, which relies on a substantial number of negative
samples, leading to heavy computation, memory overhead, and
class collision. BGRL and AFGRL require an asymmetric en-
coder architecture that incorporates Exponential Moving Aver-
age (EMA), Stop-Gradient, and an additional projector. CCA-
SSG and G-BT may demonstrate suboptimal performance on
datasets with smaller feature dimensions, as they essentially

perform dimension reduction. In contrast, our framework re-
quires no additional components except a single GNN encoder,
our Gaussian distribution-guided objective is negative-free, and
our model can also work well on low-dimensional datasets.

4.2.5. In-depth Analysis
We recognize that the optimal solution for the final loss func-

tions of CCA-SSG, G-BT, and our SSGE is Σ = Id. Despite
such similarity, we demonstrate the superiority of our objective
function theoretically as follows.

We begin by briefly discussing the phenomenon of dimen-
sional collapse in representation learning. Dimensional col-
lapse occurs when the embedding occupies a subspace rather
than the entire embedding space, which is indicated by one or
more zero singular values of the embedding matrix (in other
words, one or more zero eigenvalues λi of the covariance ma-
trix Σ) [28]. To address dimensional collapse, G-BT, CCA-
SSG, and our proposed SSGE decorrelate the covariance matrix
through a regularization term. Specifically, G-BT and CCA-
SSG minimize ||Σ − Id ||

2
F to encourage the covariance matrix

to approximate the identity matrix. In contrast, our SSGE min-
imizes the distance between the distribution of learned repre-
sentations and the isotropic Gaussian distribution, which can
be simplified as −Tr(Σ

1
2) according to Eq. (10).

Note that ||Σ− Id ||
2
F =

∑d
i=1(λi−1)2, −Tr(Σ1/2) = −

∑d
i=1
√
λi,

and
∑d

i=1 λi = ||Z|2F = d since Z is batch-normalized. We can
reformulate these regularization terms using eigenvalues λi: for
G-BT and CCA-SSG, the problem becomes min

∑d
i=1(λi − 1)2

subject to
∑d

i=1 λi = d, while for SSGE, it is min−
∑d

i=1
√
λi

under the same constraint. The optimal solution for both opti-
mization problems is λi = 1 for each i.

However, when optimizing model parameters using SGD,
G-BT and CCA-SSG may inadequately regularize zero eigen-
values compared to our SSGE. Specifically, the gradient of
||Σ − Id ||

2
F =

∑d
i=1(λi − 1)2 with respect to the eigenvalue λi

is ∇λi = 2(λi − 1). This regularization term imposes a finite
penalty on singular values λi approaching 0, potentially leading
to dimensional collapse if other loss terms offer greater rewards
than the penalty.

In contrast, the gradient of −Tr(Σ1/2) = −
∑d

i=1
√
λi with re-

spect to λi is ∇λi = −
1

2
√
λi

, resulting in a significantly larger
gradient as λi approaches 0. Thus, the optimization process
will naturally steer away from nearly infinite penalties toward
full rank Σ, avoiding dimensional collapse more effectively.

5. Experiments

In this section, we design the experiments to evaluate our
proposed SSGE and answer the following research questions.
RQ1: Does SSGE outperform existing baseline methods on
node classification and node clustering? RQ2: Is SSGE more
efficient than graph contrastive learning baselines? RQ3: How
does each component of SSGE benefit the performance? RQ4:
How to intuitively understand the role of our proposed unifor-
mity objective? RQ5: Are learned node representations uni-
formly distributed on the hypersphere? RQ6: Is SSGE sensi-
tive to hyperparameters?

6

5.1. Experiment Setup

5.1.1. Datasets
We adopt seven publicly available real-world benchmark

datasets, including three citation networks Cora, CiteSeer, and
PubMed, one reference network WikiCS, one co-purchase net-
work Computer, one co-authorship network CoauthorCS, and
one large-scale citation network ArXiv to conduct the experi-
ments throughout the paper. The statistics of the datasets are
provided in Table 1. We give their detailed descriptions as fol-
lows:

Table 1: Dataset statistics.

Dataset Type #Nodes #Edges #Feats #Cls

Cora citation 2,708 10,556 1,433 7
CiteSeer citation 3,327 9,228 3,703 6
PubMed citation 19,717 88,651 500 3
WikiCS reference 11,701 431,726 300 10
Computer co-purchase 13,752 491,722 767 10
CoauthorCS co-authorship 18,333 163,788 6,805 15
ArXiv citation 169,343 2,315,598 128 40

• Cora, CiteSeer, PubMed [32] are three well-known ci-
tation network datasets, in which nodes represent publi-
cations and edges indicate their citations. Each node in
Cora and CiteSeer is described by a 0/1-valued word vec-
tor indicating the absence/presence of the corresponding
word from the dictionary, while each node in PubMed is
described by a TF/IDF weighted word vector from the dic-
tionary. All nodes are labeled based on the respective pa-
per subjects.

• WikiCS [36] is a reference network constructed from
Wikipedia. It comprises nodes corresponding to articles
in the field of Computer Science, where edges are derived
from hyperlinks. The dataset includes 10 distinct classes
representing various branches within the field. The node
features are computed as the average GloVe word embed-
dings of the respective articles.

• Computer [37] is a network constructed from Amazon’s
co-purchase relationships. Nodes represent goods, and
edges indicate frequent co-purchases between goods. The
node features are represented by bag-of-words encoding
of product reviews, and class labels are assigned based on
the respective product categories.

• CoauthorCS [37] is a co-authorship network based on
the Microsoft Academic Graph. Here, nodes are authors,
that are connected by an edge if they co-authored a paper;
node features represent paper keywords for each author’s
papers, and class labels indicate the most active fields of
study for each author.

• ArXiv [37] is a citation network between most Com-
puter Science arXiv papers indexed by Microsoft Aca-
demic Graph, where nodes represent papers and edges rep-
resent citation relations. Each node is described by a 128-
dimensional feature vector obtained by averaging the skip-
gram word embeddings in its title and abstract. The nodes
are categorized by their related research area.

5.1.2. Baselines
To verify the effectiveness of our proposed model, our eval-

uation includes a comprehensive comparison of SSGE with 22
baseline methods. We divide all baseline models into the fol-
lowing four categories:

• Supervised methods: MLP and graph neural networks
GCN [32] and GAT [38];

• Traditional unsupervised models: random-walk based
graph embedding methods DeepWalk [39] and Node2Vec
[40], graph auto-encoders GAE and VGAE [41];

• Contrastive learning models: GMI [26], DGI [3], GGD
[42], MVGRL [23], GRACE [4], GCA [11], MERIT [43],
gCooL [12], COSTA [13], and HomoGCL [5];

• Non-contrastive self-supervised learning models: BGRL
[19], AFGRL [22], RGRL [29], CCA-SSG [20], and G-
BT [21].

Table 2: Hyperparameter Specifications.

Dataset pd, pm lr, wd λ #hid units #epochs

Cora 0.3, 0.1 1e-3, 1e-5 0.1 256-256 80
CiteSeer 0.4, 0.0 1e-3, 1e-5 0.05 512 20
PubMed 0.3, 0.5 1e-3, 1e-5 0.6 512-256 100
WikiCS 0.8, 0.1 1e-2, 1e-6 0.5 256-256 50
Computer 0.1, 0.3 1e-3, 1e-5 1.0 512-512 120
CoauthorCS 1.0, 0.2 1e-3, 1e-5 0.05 512-512 80
ArXiv 0.5, 0.3 1e-2, 1e-6 3.0 512-512 400

5.1.3. Evaluation Protocol
We evaluate the performance of SSGE on two downstream

tasks, i.e., node classification and node clustering. Following
previous work [5], We first train the model in an unsupervised
manner. Then we freeze the parameters of the encoder to gener-
ate node representations for downstream tasks. For node clas-
sification, we use the learned representations to train and test
a simple logistic regression classifier on public splits for Cora,
CiteSeer, PubMed, WikiCS, and ArXiv, and ten 1:1:8 train/-
validation/test random splits for Computer and CoauthorCS, as
they have no publicly accessible splits. We train the model for
ten runs and report the performance in terms of accuracy. For
node clustering, we train a k-means model on the learned repre-
sentations ten times, where the number of clusters is set to the
number of classes for each dataset. We measure the clustering

7

Table 3: Node classification results measured by accuracy along with standard deviations. The Input column illustrates the data used in the training stage, and Y
denotes labels. ‘-’ means the method is out-of-memory under a full-graph training setting.

Method Input Cora CiteSeer PubMed WikiCS Computer CoauthorCS ArXiv

Supervised
MLP X,Y 57.8±0.2 54.2±0.1 72.8±0.2 71.98±0.00 73.81±0.00 90.37±0.00 55.50±0.23
GCN A, X,Y 81.5±0.4 70.2±0.4 79.0±0.2 77.19±0.12 86.51±0.54 93.03±0.31 71.74±0.29
GAT A, X,Y 83.0±0.7 72.5±0.7 79.0±0.3 77.65±0.11 86.93±0.29 92.31±0.24 72.10±0.13

Traditional

DeepWalk A 68.5±0.5 49.8±0.2 66.2±0.7 74.35±0.06 85.68±0.06 84.61±0.22
Node2Vec A 70.1±0.4 49.8±0.3 69.8±0.7 71.79±0.05 84.39±0.08 85.08±0.03 70.07±0.13
GAE A, X 71.5±0.4 65.8±0.4 72.1±0.5 77.87±0.53 85.27±0.19 90.01±0.71 -
VGAE A, X 73.0±0.3 68.3±0.4 75.8±0.2 77.87±0.53 86.37±0.21 92.11±0.09 -

Contrastive

GMI A, X 83.0±0.3 72.4±0.1 79.9±0.2 74.85±0.08 82.21±0.31 88.78±0.12 -
DGI A, X 82.3±0.6 71.8±0.7 76.8±0.6 78.25±0.56 83.95±0.47 92.15±0.63 70.34±0.16
GGD A, X 83.5±0.6 73.0±0.6 81.0±0.8 78.62±0.47 88.12±0.62 92.30±0.23 71.20±0.20
MVGRL A, X 83.5±0.4 73.3±0.5 80.1±0.7 77.57±0.46 87.52±0.11 92.11±0.12 -
GRACE A, X 81.9±0.4 71.3±0.3 80.1±0.2 78.64±0.33 88.29±0.11 92.17±0.04 -
GCA A, X 81.7±0.3 71.1±0.4 79.5±0.5 78.35±0.05 87.85±0.31 93.10±0.01 -
MERIT A, X 83.1±0.6 73.5±0.7 80.1±0.4 78.35±0.05 88.01±0.12 92.51±0.14 -
gCooL A, X 82.8±0.5 72.0±0.3 80.2±0.4 78.74±0.04 88.67±0.10 92.75±0.01 -
COSTA A, X 82.2±0.2 70.7±0.5 80.4±0.3 78.82±0.12 88.32±0.03 92.94±0.10 -
HomoGCL A, X 84.1±0.5 72.3±0.7 81.1±0.3 78.26±0.32 88.46±0.20 92.28±0.03 -

Non-contrastive

BGRL A, X 82.7±0.6 71.1±0.8 79.6±0.5 78.41±0.09 87.89±0.10 92.72±0.03 71.44±0.12
AFGRL A, X 79.8±0.2 69.4±0.2 80.0±0.1 77.62±0.49 88.12±0.27 93.07±0.17 -
RGRL A, X 83.5±0.7 71.5±0.9 79.8±0.3 78.78±0.64 88.45±0.52 92.94±0.13 71.49±0.08
CCA-SSG A, X 83.9±0.4 73.0±0.3 80.7±0.4 77.92±0.65 88.76±0.36 93.01±0.20 71.21±0.20
G-BT A, X 83.6±0.0 72.9±0.4 80.4±0.1 76.83±0.73 87.93±0.36 92.91±0.25 71.12±0.18
SSGE A, X 83.9±0.3 74.1±0.3 81.6±0.1 79.18±0.57 89.05±0.58 93.46±0.45 71.62±0.19

performance in terms of two prevalent metrics Normalized Mu-
tual Information (NMI) score: NMI = 2I(Ŷ; Y)/[H(Ŷ)+H(Y)],
where Ŷ and Y being the predicted cluster indexes and class la-
bels respectively, I(·) being the mutual information, and H(·)
being the entropy; and Adjusted Rand Index (ARI): ARI =
RI − E[RI]/(max{RI} − E[RI]), where RI being the Rand In-
dex.

5.1.4. Implementation Details

We implement our model with PyTorch. All experiments are
conducted on a V100 GPU with 32 GB of memory. The graph
encoder fθ is specified as a standard two-layer GCN model
with the ELU activation [44] for all the datasets except Cite-
Seer (where we empirically find that a one-layer GCN is bet-
ter). During training, we employ the Adam SGD optimizer [45]
with a learning rate and weight decay of either (1e-3, 1e-5) or
(1e-2, 1e-6). The augmentation function set T is controlled by
the edge dropping ratio pd and the feature masking ratio pm.
We utilize the processed versions of all datasets provided by
the Deep Graph Library [46]. Detailed hyperparameters can
be found in Table 2. The implementation code is available at
https://github.com/Cloudy1225/SSGE.

5.2. Main Results

5.2.1. Performance Comparison (RQ1)
The experimental results of node classification on seven

datasets are shown in Table 3. As we can see, SSGE outper-
forms all self-supervised baselines on six out of seven datasets,
despite its simple architecture. On Cora, SSGE achieves com-
petitive results as the most powerful baseline HomoGCL. It is
worth mentioning that we empirically find that on CoauthorCS,
a pure two-layer MLP encoder is better than GNN models. This
might be because the graph-structured information is much less
informative than the node features, presumably providing harm-
ful signals for classification. We also evaluate the node cluster-
ing performance on the three citation networks Cora, CiteSeer,
and PubMed. As shown in Table 4, SSGE can always yield sig-
nificant improvements over other methods, especially on Cora
with a 2.7% gain for NMI and a 3.3% gain for ARI. These re-
sults clearly demonstrate the effectiveness of our method.

5.2.2. Efficiency Comparison (RQ2)
We conduct a comparative analysis with several graph con-

trastive learning methods regarding the number of model pa-
rameters, training time, and memory costs on datasets including
Cora, CiteSeer, PubMed, and Computer. Table 5 summarizes
all indicators of various methods. Overall, SSGE has fewer
parameters, shorter training time, and fewer memory costs in

8

https://github.com/Cloudy1225/SSGE

Table 4: Node clustering results measured by NMI and ARI along with standard deviations.

Dataset Cora CiteSeer PubMed

Metric NMI ARI NMI ARI NMI ARI

k-means 15.44±3.83 9.49±2.01 20.66±2.83 16.80±3.02 31.34±0.15 28.12±0.03
SC 46.07±0.99 34.39±0.98 23.95±0.53 18.48±0.42 28.75±0.00 30.34±0.00
VGAE 52.48±1.33 43.99±2.34 34.46±0.92 32.65±0.92 27.16±1.45 26.32±1.15

DGI 55.82±0.60 48.91±1.42 41.16±0.54 39.78±0.74 25.27±0.02 24.06±0.03
MVGRL 56.30±0.27 50.28±0.40 43.47±0.08 44.09±0.09 27.07±0.00 24.53±0.00
GRACE 55.82±0.60 48.91±1.42 39.07±0.07 40.38±0.08 30.44±0.02 30.62±0.01
GCA 52.82±1.11 46.29±1.80 41.08±0.28 41.72±0.30 31.62±0.08 30.76±0.17
gCooL 50.25±1.08 44.95±1.74 41.67±0.41 42.66±0.47 33.14±0.02 31.93±0.01
HomoGCL 57.87±1.47 53.68±1.77 40.32±0.07 40.10±0.09 27.67±1.78 25.59±0.84

BGRL 55.38±0.49 47.10±0.35 38.95±0.33 38.81±0.12 28.43±0.10 24.81±0.08
CCA-SSG 56.51±1.49 50.77±3.39 43.69±0.24 44.26±0.23 29.61±0.01 25.81±0.01
G-BT 55.54±1.19 48.39±2.44 42.78±0.25 43.89±0.21 30.12±0.03 29.32±0.02
SSGE 60.58±0.25 56.96±0.34 45.27±0.33 46.87±0.37 33.42±0.12 32.05±0.11

Table 5: Comparison of the number of parameters, training time for achieving the best performance, and the memory cost of different methods on Cora, CiteSeer,
PubMed, and Computer.

Dataset Cora CiteSeer PubMed Computer

#Paras Time Mem #Paras Time Mem #Paras Time Mem #Paras Time Mem

DGI 1,260K 4.06s 570MB 2,422K 4.51s 710MB 782K 10.24s 1,024MB 919K 13.50s 926MB
MVGRL 1,731K 17.73s 3,838MB 4,055K 15.48s 7,386MB 775K 83.64s 4,622MB 1,049K 124.96s 4,660MB
GRACE 564K 10.57s 748MB 2,159K 7.59s 1,018MB 326K 396.97s 12,744MB 394K 267.72s 6,630MB
HomoGCL 866K 3.95s 1,014MB 2,028K 6.01s 1,478MB 388K 167.97s 22,010MB 525K 92.35s 11,788MB
SSGE 433K 3.41s 580MB 1,896K 2.44s 800MB 388K 7.90s 1,256MB 656K 15.42s 1,234MB

most cases. This is because our method does not rely on addi-
tional projection heads, parameterized mutual information es-
timator, and negative samples, which contribute to increased
computational load, additional parameters, and storage require-
ments. Besides, the short training time potentially indicates the
fast convergence of our algorithm. Despite its simplicity and ef-
ficiency, our method achieves even better (or competitive) per-
formance.

5.3. In-Depth Analysis

5.3.1. Effectiveness of Alignment/Uniformity Terms (RQ3)
To verify the effects of each loss component, we conduct ab-

lation studies with varying combinations of the alignment term
and the uniformity term. We assess their impact on node clas-
sification across four datasets, and the results are presented in
Table 6. It is observed that only using the alignment term will
lead to a performance drop instead of completely collapsed so-
lutions since node representations are batch-normalized to have
zero-mean and one-standard deviation. On the other hand, opti-
mizing only the uniformity term yields unsatisfactory results, as
the model learns nothing meaningful but Gaussian distributed

representations. These results highlight the effectiveness of in-
corporating the alignment term and the uniformity term to learn
discriminative node representations.

Variants Cora CiteSeer PubMed WikiCS

Lali 79.7±0.1 71.9±0.2 78.1±0.2 77.02±0.40
Luni 48.7±0.6 30.1±0.7 51.4±0.5 76.47±0.60
Lali +Luni 83.9±0.3 74.1±0.3 81.6±0.1 79.18±0.57

Table 6: Ablation study of node classification accuracy (%) on the key compo-
nents of SSGE.

5.3.2. Visualization of Feature Covariance Matrix (RQ4)
To gain a visual insight into the role of the uniformity term,

we present visualizations depicting the normalized covariance
matrix Σ of learned representations under various settings on
Cora. As depicted in Figure 2(a), the off-diagonal elements of
the covariance matrix approach 1 when the uniformity term is
not considered. This suggests that various dimensions of the

9

representation matrix are coupled together, signifying the oc-
currence of dimensional collapse (all the embeddings lie in a
line). From Figure 2(b) and Figure 2(c), we observe that the
proposed uniformity objective effectively decorrelates diverse
representation dimensions, thereby mitigating the issue of di-
mensional collapse.

0.2

0.4

0.6

0.8

1.0

(a) Lali

0.2

0.4

0.6

0.8

1.0

(b) Luni

0.2

0.4

0.6

0.8

1.0

(c) Lali +Luni

Figure 2: Visualization of the covariance matrix (absolute value) of learned
representations on Cora.

5.3.3. Visualization of Feature Distribution on S1 (RQ5)
To verify the uniformity of node representations learned by

SSGE, we visualize feature distributions of all classes and se-
lected specific classes on S1 using Gaussian kernel density es-
timation in R2. Figure 3 and Figure 4 summarize the resulting
distributions of learned representations on Cora and CiteSeer,
respectively. As can be seen, representations learned by SSGE
are both aligned (having low intra-class distances) and uniform
(evenly distributed on S1).

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(a) All Classes

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(b) Class 0

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(c) Class 1

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(d) Class 2

Figure 3: Visualizing the alignment and uniformity of node representations on
Cora.

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(a) All Classes

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(b) Class 0

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(c) Class 1

-1.0 -0.5 0 0.5 1.0
-1.0

-0.5

0

0.5

1.0

(d) Class 2

Figure 4: Visualizing the alignment and uniformity of node representations on
CiteSeer.

5.4. Hyperparameter Analysis (RQ6)
5.4.1. Impact of Uniformity Intensity

We investigate how the intensity of uniformity influences the
performance as the trade-off hyperparameter λ is varied. Fig-
ure 5(a) depicts the variation in classification accuracy with dif-
ferent values of λ across Cora, WikiCS, Computer, and Coau-
thorCS. It can be observed that at the beginning, increasing λ

enhances performance, but excessively large values of λ re-
sult in a significant degradation of performance. When λ is
too small, the uniformity term fails to fully leverage its role in
promoting uniform representations. Conversely, when λ is ex-
cessively large, placing too much emphasis on uniformity while
neglecting alignment leads to meaningless representations. To
choose the value of λ, we recommend conducting a grid search
or a sensitivity analysis on a subset of datasets during the ini-
tial experimentation phase. This approach can help identify a
suitable range for λ that balances performance across different
contexts.

0.0 0.02 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.5 2.060

65

70

75

80

85

90

95

AC
C

(%
)

Cora
WikiCS
Computer
CoauthorCS

(a) trade-off λ

16 32 64 128 256 512 1024
representation dimension

77.5

80.0

82.5

85.0

87.5

90.0

92.5

AC
C

(%
) Cora

WikiCS
Computer
CoauthorCS

(b) representation dimension

Figure 5: Impact of the trade-off λ and representation dimension.

5.4.2. Impact of Representation Dimension
We conduct experiments to explore the impact of varying the

representation dimension on performance, as illustrated in Fig-
ure 5(a). Similar to other self-supervised methods such as DGI
[3], GRACE [4], and BGRL [19], our method achieves opti-
mal performance with an appropriately large dimension (usu-
ally 256 or 512), while a too large dimension 1, 024 results
in a slight decrease in performance. In comparison to feature
decorrelation methods like CCA-SSG [20] and G-BT [21], our
method can also work well with a representation dimension
smaller than the input dimension, on low-dimensional datasets
such as WikiCS and PubMed.

5.4.3. Impact of Augmentation Intensity
We further conduct a sensitivity analysis on the augmentation

intensity by investigating the effects of different combinations
of the feature masking ratio pm and the edge dropping ratio pd.
The results of node classification on Cora, CiteSeer, and Wi-
kiCS are presented in Figure 6. Overall, our method demon-
strates robustness to augmentation intensity: within an appro-
priate range of pm and pd, our approach consistently achieves
competitive results.

0.0 0.2
0.4

0.6
0.8

1.0

feature masking ratio
0.0

0.2
0.4

0.6
0.8

1.0

ed
ge

 dr
op

pin
g r

ati
o

50
55
60
65
70
75
80

AC
C

(%
)

(a) Cora

0.0 0.2
0.4

0.6
0.8

1.0

feature masking ratio
0.0

0.2
0.4

0.6
0.8

1.0

ed
ge

 dr
op

pin
g r

ati
o

30
40
50

60

70

AC
C

(%
)

(b) CiteSeer

0.0 0.2
0.4

0.6
0.8

1.0

feature masking ratio
0.0

0.2
0.4

0.6
0.8

1.0

ed
ge

 dr
op

pin
g r

ati
o

66
68
70
72
74
76
78

AC
C

(%
)

(c) WikiCS

Figure 6: Impact of the augmentation intensity.

10

6. Conclusion

In this paper, we introduce a negative-free self-supervised
objective, drawing inspiration from the fact that the normalized
isotropic Gaussian distributed points are uniformly distributed
on the unit hypersphere. Our new objective induces a simple
and light model without reliance on negative pairs, a parame-
terized mutual information estimator, an additional projector or
asymmetric architectures. Extensive experiments on node clas-
sification and node clustering across seven graph benchmarks
illustrate that our model achieves competitive performance with
fewer parameters, shorter training times, and lower memory
costs compared to existing contrastive learning methods.
Limitations and Future Work: Our empirical studies were
limited to static homogeneous graphs. Future work will need
to explore extensions to other types of graphs, including het-
erogeneous and dynamic graphs. Additionally, our framework
assumes that the learned representations follow a Gaussian dis-
tribution for the sake of simplicity. While our framework has
been experimentally validated, it may not be the most suitable
distribution in all contexts.

Acknowledgments

This work is partially supported by the National
Key Research and Development Program of China
(2021YFB1715600), the National Natural Science Foun-
dation of China (62306137). We would like to express our
sincere gratitude to the reviewers, associate editor, and editor-
in-chief for their invaluable time and effort dedicated to the
evaluation of our manuscript.

References

[1] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, P. S. Yu, Graph self-
supervised learning: A survey, IEEE Trans. on Knowl. and Data Eng.
35 (6) (2022) 5879–5900.

[2] W. Ju, Z. Fang, Y. Gu, Z. Liu, Q. Long, Z. Qiao, Y. Qin, J. Shen, F. Sun,
Z. Xiao, et al., A comprehensive survey on deep graph representation
learning, Neural Networks (2024) 106207.

[3] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, R. D. Hjelm,
Deep graph infomax, in: International Conference on Learning Represen-
tations, 2019.

[4] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, L. Wang, Deep graph contrastive
representation learning, ArXiv abs/2006.04131 (2020).

[5] W.-Z. Li, C.-D. Wang, H. Xiong, J.-H. Lai, Homogcl: Rethinking ho-
mophily in graph contrastive learning, in: Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’23, Association for Computing Machinery, New York, NY, USA, 2023,
p. 1341–1352.

[6] Y. Liu, H. Zhang, T. He, T. Zheng, J. Zhao, Bootstrap latents of nodes and
neighbors for graph self-supervised learning, in: Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2024.

[7] H. Liang, X. Du, B. Zhu, Z. Ma, K. Chen, J. Gao, Graph contrastive
learning with implicit augmentations, Neural Networks 163 (2023) 156–
164.

[8] M. Liu, K. Liang, Y. Zhao, W. Tu, S. Zhou, X. Gan, X. Liu, K. He, Self-
supervised temporal graph learning with temporal and structural intensity
alignment, IEEE Transactions on Neural Networks and Learning Systems
(2024).

[9] M. Liu, Y. Liu, K. LIANG, W. Tu, S. Wang, sihang zhou, X. Liu, Deep
temporal graph clustering, in: The Twelfth International Conference on
Learning Representations, 2024.

[10] H. Wu, Y. Wu, N. Li, M. Yang, J. Zhang, M. K. Ng, J. Long, High-
order proximity and relation analysis for cross-network heterogeneous
node classification, Machine Learning (2024) 1–26.

[11] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, L. Wang, Graph contrastive learn-
ing with adaptive augmentation, in: Proceedings of the Web Conference
2021, WWW’21, 2021, p. 2069–2080.

[12] B. Li, B. Jing, H. Tong, Graph communal contrastive learning, in:
Proceedings of the ACM Web Conference 2022, WWW’22, 2022, p.
1203–1213.

[13] Y. Zhang, H. Zhu, Z. Song, P. Koniusz, I. King, Costa: Covariance-
preserving feature augmentation for graph contrastive learning, Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (2022).

[14] H. Duan, C. Xie, B. Li, P. Tang, Self-supervised contrastive graph rep-
resentation with node and graph augmentation, Neural Networks 167
(2023) 223–232.

[15] Y. Yuan, B. Xu, H. Shen, Q. Cao, K. Cen, W. Zheng, X. Cheng, Towards
generalizable graph contrastive learning: An information theory perspec-
tive, Neural Networks 172 (2024) 106125.

[16] T. Wang, P. Isola, Understanding contrastive representation learning
through alignment and uniformity on the hypersphere, in: Proceedings of
the 37th International Conference on Machine Learning, Vol. 119, 2020,
pp. 9929–9939.

[17] X. Chen, K. He, Exploring simple siamese representation learning, in:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021, pp. 15745–15753.

[18] N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, H. Khandeparkar, A the-
oretical analysis of contrastive unsupervised representation learning, in:
International Conference on Machine Learning, PMLR, 2019, pp. 5628–
5637.

[19] S. Thakoor, C. Tallec, M. G. Azar, M. Azabou, E. L. Dyer, R. Munos,
P. Veličković, M. Valko, Large-scale representation learning on graphs via
bootstrapping, in: International Conference on Learning Representations,
2022.

[20] H. Zhang, Q. Wu, J. Yan, D. Wipf, P. S. Yu, From canonical correlation
analysis to self-supervised graph neural networks, in: Advances in Neural
Information Processing Systems, Vol. 34, 2021, pp. 76–89.

[21] P. Bielak, T. Kajdanowicz, N. V. Chawla, Graph barlow twins: A self-
supervised representation learning framework for graphs, Knowledge-
Based Systems 256 (2022) 109631.

[22] N. Lee, J. Lee, C. Park, Augmentation-free self-supervised learning on
graphs, in: Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022, pp. 7372–7380.

[23] K. Hassani, A. H. Khasahmadi, Contrastive multi-view representation
learning on graphs, in: Proceedings of the 37th International Conference
on Machine Learning, ICML’20, 2020.

[24] K. Cen, H. Shen, Q. Cao, B. Xu, X. Cheng, Towards powerful graph
contrastive learning without negative examples, in: 2022 International
Joint Conference on Neural Networks (IJCNN), IEEE, 2022, pp. 1–9.

[25] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, Y. Bengio, Learning deep representations by mutual
information estimation and maximization, in: International Conference
on Learning Representations, 2019.

[26] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, J. Huang, Graph
representation learning via graphical mutual information maximization,
in: Proceedings of The Web Conference 2020, 2020, pp. 259–270.

[27] R. Yan, P. Bao, X. Zhang, Z. Liu, H. Liu, Towards alignment-uniformity
aware representation in graph contrastive learning, in: Proceedings of the
17th ACM International Conference on Web Search and Data Mining,
2024, pp. 873–881.

[28] L. Jing, P. Vincent, Y. LeCun, Y. Tian, Understanding dimensional col-
lapse in contrastive self-supervised learning, in: International Conference
on Learning Representations, 2022.
URL https://openreview.net/forum?id=YevsQ05DEN7

[29] N. Lee, D. Hyun, J. Lee, C. Park, Relational self-supervised learning on
graphs, in: Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, 2022, pp. 1054–1063.

[30] A. Ermolov, A. Siarohin, E. Sangineto, N. Sebe, Whitening for self-

11

https://openreview.net/forum?id=YevsQ05DEN7
https://openreview.net/forum?id=YevsQ05DEN7
https://openreview.net/forum?id=YevsQ05DEN7

supervised representation learning, in: International conference on ma-
chine learning, PMLR, 2021, pp. 3015–3024.

[31] S. Nowozin, B. Cseke, R. Tomioka, f-gan: Training generative neural
samplers using variational divergence minimization, Advances in neural
information processing systems 29 (2016).

[32] T. N. Kipf, M. Welling, Semi-supervised classification with graph convo-
lutional networks, in: International Conference on Learning Representa-
tions, 2017.

[33] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversar-
ial networks, in: International conference on machine learning, PMLR,
2017, pp. 214–223.

[34] M. Gutmann, A. Hyvärinen, Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models, in: Proceedings of the
thirteenth international conference on artificial intelligence and statistics,
JMLR Workshop and Conference Proceedings, 2010, pp. 297–304.

[35] W. Liu, R. Lin, Z. Liu, L. Xiong, B. Schölkopf, A. Weller, Learning with
hyperspherical uniformity, in: International Conference On Artificial In-
telligence and Statistics, PMLR, 2021, pp. 1180–1188.

[36] P. Mernyei, C. Cangea, Wiki-cs: A wikipedia-based benchmark for graph
neural networks, ArXiv abs/2007.02901 (2020).

[37] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, Pitfalls of graph
neural network evaluation, ArXiv abs/1811.05868 (2018).

[38] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio,
Graph attention networks, in: International Conference on Learning Rep-
resentations, 2018.

[39] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 701–710.

[40] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, 2016, p. 855–864.
doi:10.1145/2939672.2939754.

[41] T. Kipf, M. Welling, Variational graph auto-encoders, ArXiv
abs/1611.07308 (2016).

[42] Y. Zheng, S. Pan, V. Lee, Y. Zheng, P. S. Yu, Rethinking and scaling up
graph contrastive learning: An extremely efficient approach with group
discrimination, Advances in Neural Information Processing Systems 35
(2022) 10809–10820.

[43] M. Jin, Y. Zheng, Y.-F. Li, C. Gong, C. Zhou, S. Pan, Multi-scale con-
trastive siamese networks for self-supervised graph representation learn-
ing, in: Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, 2021, pp. 1477–1483. doi:10.24963/
ijcai.2021/204.

[44] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep net-
work learning by exponential linear units (elus), arXiv: Learning (2015).

[45] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR
abs/1412.6980 (2014).

[46] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu,
Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, Z. Zhang, Deep graph library:
A graph-centric, highly-performant package for graph neural networks,
arXiv preprint arXiv:1909.01315 (2019).

12

https://doi.org/10.1145/2939672.2939754
https://doi.org/10.24963/ijcai.2021/204
https://doi.org/10.24963/ijcai.2021/204

	Introduction
	Related Works
	Preliminary
	Problem Statement
	Graph Convolutional Network
	Wasserstein Distance

	Methodology
	Model Framework
	Graph Augmentation
	Training and Inference

	Negative-Free Self-Supervised Loss
	Weakness of Graph Contrastive Learning
	Uniformity from Isotropic Gaussian Distribution
	Combining with the View Consistency Prior
	Overall Objective
	In-depth Analysis

	Experiments
	Experiment Setup
	Datasets
	Baselines
	Evaluation Protocol
	Implementation Details

	Main Results
	Performance Comparison (RQ1)
	Efficiency Comparison (RQ2)

	In-Depth Analysis
	Effectiveness of Alignment/Uniformity Terms (RQ3)
	Visualization of Feature Covariance Matrix (RQ4)
	Visualization of Feature Distribution on S1 (RQ5)

	Hyperparameter Analysis (RQ6)
	Impact of Uniformity Intensity
	Impact of Representation Dimension
	Impact of Augmentation Intensity

	Conclusion

