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Abstract—Graph clustering, which involves the partitioning
of nodes within a graph into disjoint clusters, holds significant
importance for numerous subsequent applications. Recently,
contrastive learning, known for utilizing supervisory information,
has demonstrated encouraging results in deep graph clustering.
This methodology facilitates the learning of favorable node
representations for clustering by attracting positively correlated
node pairs and distancing negatively correlated pairs within
the representation space. Nevertheless, a significant limitation
of existing methods is their inadequacy in thoroughly exploring
node-wise similarity. For instance, some hypothesize that the
node similarity matrix within the representation space is iden-
tical, ignoring the inherent semantic relationships among nodes.
Given the fundamental role of instance similarity in clustering,
our research investigates contrastive graph clustering from the
perspective of the node similarity matrix. We argue that an ideal
node similarity matrix within the representation space should
accurately reflect the inherent semantic relationships among
nodes, ensuring the preservation of semantic similarities in the
learned representations. In response to this, we introduce a new
framework, Reliable Node Similarity Matrix Guided Contrastive
Graph Clustering (NS4GC), which estimates an approximately
ideal node similarity matrix within the representation space
to guide representation learning. Our method introduces node-
neighbor alignment and semantic-aware sparsification, ensuring
the node similarity matrix is both accurate and efficiently sparse.
Comprehensive experiments conducted on 8 real-world datasets
affirm the efficacy of learning the node similarity matrix and the
superior performance of NS4GC. The implementation code can
be found at: https://github.com/Cloudy1225/NS4GC.

Index Terms—deep graph clustering, graph contrastive learn-
ing, graph neural networks.

I. INTRODUCTION

Clustering is significantly important in numerous practical
applications and plays a crucial role in the field of machine
learning. One specific task, graph clustering, involves parti-
tioning nodes within a graph into disjoint groups. Graph clus-
tering has demonstrated its effectiveness in various domains,
including social network analysis, recommender systems,
bioinformatics, and medical science [1], [2]. Recently, the
emergence of deep graph clustering, which adeptly captures
both structural relationships and node attribute information,
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signifies a notable trend in the evolution of graph clustering
methods [3], [4], [5], [6], [7].

A prominent category of deep graph clustering methods
is comprised of Graph Contrastive Learning (GCL)-based
approaches [8], [9], [6], [10], which aim to learn a repre-
sentation invariant to augmentations of the same graph in-
stance. Generally, GCL-based methods can be divided into two
groups, each following a two-step strategy [1]. Initially, graph
contrastive learning is employed in the pre-training phase to
yield informative node representations. Subsequently, the first
group [9], [6] utilizes conventional clustering techniques, such
as k-means, on the obtained representations. The second group
[10] refines the learned representations using cluster-oriented
pseudo-supervision, aiming to concurrently perform clustering
and embedding learning. Given the foundational role of repre-
sentation learning in the pre-training phase for all GCL-based
methods, our work focuses on learning representations more
conducive to clustering.

Clustering algorithms, such as k-means, typically rely on
distance or similarity measures between pairs of instances to
group semantically similar instances within the same clus-
ter [12]. Therefore, the ideal representation space for graph
clustering is one where semantically similar nodes (i.e., nodes
within the same ground-truth cluster) exhibit higher similarity
than semantically different nodes (i.e., nodes from different
ground-truth clusters). To provide visual clarity, we depict the
ideal node similarity matrix within the representation space in
Figure 1(c). For simplicity, the node similarity matrix takes the
form of a binary matrix, indicating binary semantic similarity
between any pair of nodes in the graph and demonstrating
a sparse structure. Specifically, similarities corresponding to
nodes within the same ground-truth cluster are denoted as
1, while similarities corresponding to nodes from different
ground-truth clusters are denoted as 0. Ideally, if we could
obtain such a node similarity matrix to guide the represen-
tation learning process, resulting node representations would
effectively preserve semantic similarities between nodes and
prove highly conducive to clustering. However, obtaining the
ideal node similarity matrix is generally unfeasible due to the
absence of labels or supervision, rendering it impractical to
employ the node similarity matrix directly for representation
learning.

We further undertake a study of contrastive graph clustering
from the perspective of learning the node similarity matrix.
Node-node contrastive methods, such as GRACE [11], GCA
[13] implicitly assume the node similarity matrix to be an
identity matrix. These methods aim to align positive pairs,
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(a) Input Graph

7 8 94 5 6321

1

2

3

4

5

7

6

8

9

(b) Input Adjacency
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(c) Ideal NSM
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(d) GRACE’s NSM
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(e) Our NSM
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(f) Our Adjacency

Fig. 1. Visualization of the node similarity matrix (NSM), with •/◦ denoting the pairwise semantic similarity/difference (1/0). (a) depicts the input attributed
graph, where the digit is the node index and the color is the class index. (b) represents the input adjacency matrix, serving as a noise and incomplete
surrogate for the ideal node similarity matrix. (c) is the ideal node similarity matrix. (d) illustrates the node similarity matrix for node-node contrastive
learning methods, such as GRACE [11], where it is implicitly assumed to be an identity matrix. (e) displays our learned node similarity matrix, characterized
as a refined adjacency matrix, enriched with additional intra-cluster edges, as depicted in (f). For intra-cluster but disconnected node pairs, like (4, 6), they
are expected to exhibit relatively high cosine similarity due to their inherently similar input features or the influence of the message passing mechanism in
graph neural networks. In this case, node-node contrastive methods such as GRACE impose heavier penalties on such pairs to distance them. In contrast, our
semantic-aware sparsification mitigates heavy penalization for them, thereby preserving their high similarity to a considerable extent (see Gradient Analysis
in Section IV-B3).

which involve augmented node pairs derived from the same
node, while simultaneously pushing apart negative pairs, en-
compassing any two distinct nodes from the training graph.
Essentially, only the diagonal entries of the node similarity
matrix within the representation space are set to 1, as depicted
in Figure 1(d). In contrast, some negative-free methods, like
CCASSG [14] and BGRL [15], focus solely on aligning
positive pairs, which can potentially result in a trivial solution
where all representations collapse into a single point, i.e., the
node similarity matrix within the representation space becomes
an all-one matrix. Therefore, the node-node contrastive meth-
ods and the negative-free methods represent two opposing
extremes: node-node contrastive methods assume the node
similarity matrix to be an identity matrix (or extremely sparse),
while negative-free methods do not utilize any sparse structure
within the node similarity matrix.

To mitigate this issue and achieve a balanced approach, we
strive to estimate an approximately ideal node similarity matrix
within the representation space to guide the representation
learning phase. This matrix is anticipated to be both reliable
and suitably sparse. Our investigation thus explores the prin-
ciple of homophily in real-world graphs, which suggests that
connected nodes tend to share similar underlying semantics
[16], thereby mirroring prevalent cluster information within
actual graph structures. This phenomenon is substantiated by
the high node homophily figures in Table II and the enhanced
clustering outcomes presented in Table IV. Specifically, we
begin by aligning nodes with their neighbors in the repre-
sentation space, enhancing the similarity of connected nodes.
This approach sets entries for connected node pairs in the
node similarity matrix to 1. Unlike node-node contrastive
methods that predict sparse (0) entries for unconnected node
pairs, we employ a semantic-aware sparsification technique.
This technique fine-tunes the level of sparsity in the node
similarity matrix, retaining entries close to 1 for node pairs
with relatively high semantic similarity and setting others to
0. Hence, our refined node similarity matrix essentially acts
as an enhanced adjacency matrix that includes more intra-
cluster connections, as illustrated in Figures 1(e) and (f). Con-
sequently, we introduce a novel contrastive graph clustering

method, NS4GC. NS4GC utilizes the refined node similarity
matrix to discern and leverage underlying semantic similarities
among nodes for clustering purposes. Extensive experiments
on eight real-world datasets validate the effectiveness of our
approach in learning a reliable node similarity matrix and
demonstrate the superior performance of the proposed NS4GC
method.

The contributions of this work can be summarized as
follows:

• New Problem and Insights. We investigate contrastive
graph clustering from the perspective of the node sim-
ilarity matrix, and identify crucial issues in both node-
node contrastive methods, which assume identical node
similarity matrices, and negative-free methods associated
with excessively dense matrices.

• New Methodology. We introduce a new clustering-
friendly contrastive learning method that utilizes an ap-
proximated ideal node similarity matrix to guide the
representation learning process. This method integrates
node-neighbor alignment and semantic-aware sparsifica-
tion, ensuring the node similarity matrix is both depend-
able and suitably sparse.

• SOTA Performance. Through comprehensive experi-
mentation on eight benchmark datasets spanning various
fields, our method demonstrates its ability to learn a more
accurate node similarity matrix within the representation
space and outperforms various state-of-the-art (SOTA)
methods.

II. RELATED WORK

A. Graph Neural Networks

GNNs comprise a group of neural network models adept
at capturing both graph structure and node attribute infor-
mation [17], [18], [19], [20]. They serve the purpose of
graph representation learning and facilitate various tasks, such
as recommender systems [21], [22], anomaly detection [23],
molecular graph generation [24], and graph distillation [25],
[26]. Notably, GCN [17] stands out as one of the most
influential models, which extends the conventional convolution
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operation, originally designed for sequential or grid data, to
graph-structured data. Furthermore, GAT [18] introduces an
attention mechanism, enabling a more flexible aggregation of
messages from neighbors by learning the importance of each
such neighbor. On the other front, GraphSAGE [19] adopts a
sampling-based approach to gather neighbor information, mak-
ing it particularly suitable for large-scale graphs. APPNP [20]
breaks new ground by decoupling prediction and propagation,
effectively addressing the inherent limited-range issue present
in many neighbor aggregation models. For most deep graph
clustering methods, GNN plays a pivotal role in embedding
nodes into a lower-dimensional space. Similar to most previous
works [11], [14], [15], we adopt GCN as the foundational
graph encoder.

B. Attributed Graph Clustering

Recently, substantial methods have emerged in attributed
graph clustering, largely owing to their strong capacity to rep-
resent both attribute and structural information within graphs
[1]. The majority of attributed graph clustering methods adopt
a two-stage approach, conducting traditional or neural clus-
tering subsequent to obtaining low-dimensional node repre-
sentations. Notably, among these methods, Graph Contrastive
Learning (GCL) and Graph Auto-Encoder (GAE) stand out as
highly effective strategies for representation learning.

1) GCL-based Clustering Methods: Contrastive graph clus-
tering methods employ a crucial concept of enhancing the dis-
criminability of features by attracting positive graph instances
and repelling negative ones [1]. For instance, DGI [4] and MV-
GRL [8] employ the mutual information maximization prin-
ciple to contrast node-level representations with (sub-)graph-
level representations. On the other hand, node-node contrastive
methods GRACE [11] and GCA [13] adopt InfoNCE [27] as
their objective, aiming to align augmented node pairs originat-
ing from the same node while pushing apart any two distinct
nodes from the training graph. gCooL [28] further integrates
community detection and InfoNCE to capture cluster-wise
similarity. Negative-free methods CCASSG [14] and BGRL
[15] focus primarily on aligning positive pairs, preventing
representation collapse through the use of asymmetric network
architecture and regularization of the empirical covariance
matrix of representations, respectively. Additionally, SCGC
[9] simplifies graph augmentation through parameter-unshared
Siamese encoders and embedding disturbance, while CCGC
[6] taps into intrinsic supervision information from high-
confidence clustering results to enhance the quality of positive
and negative instances.

Discussion. Here we analyze the methods above from the
perspective of the node similarity matrix, since computing
node distance/similarity is essential for clustering. An ideal
node similarity matrix should reflect the inherent semantic
similarity/difference between any pair of nodes within the
graph. Guided by this node similarity matrix, the learned repre-
sentations of semantically similar nodes are positioned closely
within the representation space, thereby facilitating the cluster-
ing of such nodes into cohesive groups. However, in practice,
GRACE and GCA implicitly assume the node similarity matrix

to be an identity matrix, while BGRL and CCASSG lack
explicit constraints on off-diagonal entries. DGI and MVGRL,
which contrast node-level representations with (sub-)graph-
level representations, yield a highly uncertain node similarity
matrix. gCooL incorporates a community/clustering detection
module and attempts to align nodes with their respective
community/cluster, but the accuracy of the detected communi-
ties/clusters is disappointing, introducing additional noise [28].
On the other hand, while CCGC can better capture node-
wise similarity by carefully selecting true positive instances
and hard negative instances, they require time-consuming k-
means clustering at each iteration. In contrast, our method,
utilizing a simple node-neighbor alignment and semantic-
aware sparsification, can effectively learn an approximately
ideal node similarity matrix, resulting in clustering-friendly
representations.

2) GAE-based Clustering Methods: GAE/VGAE [3] is the
pioneering graph auto-encoder model, which embeds node
attributes along with structural information through a graph
encoder, followed by the reconstruction of the graph adja-
cency using an inner product decoder. Following this, AR-
GA/ARVGA [29] focuses on aligning latent representations
with a prior distribution through adversarial learning. To
address challenges associated with isolated nodes, GNAE
and VGNAE [30] employ ℓ2 normalization, which effectively
prevents representations from converging towards zero. These
methods adopt a direct approach by applying k-means to pre-
trained representations to obtain cluster assignments. In con-
trast, the subsequent methods refine the pre-trained represen-
tations through cluster-oriented pseudo supervision. DAEGC
[31], for instance, aims to enhance clustering-oriented features
by minimizing joint clustering and reconstruction losses after
pre-training. Both SDCN [32] and DFCN [33] introduce a
unified framework that jointly trains an auto-encoder and a
graph auto-encoder. They mitigate the issue of oversmoothing
by incorporating an information transport operation and a
structure-attribute fusion module, respectively. More recently,
EGAE [34] introduces an integration of relaxed k-means for
improved clustering performance, while R-GAE [35] enhances
GAE-based approaches by tackling feature randomness and
feature drift.

3) Community Clustering Methods: Some studies have
integrated traditional community detection techniques with
graph neural networks to advance deep graph clustering. These
efforts involve directly optimizing graph clustering by employ-
ing community-oriented loss functions, derivatives of well-
established cohesiveness metrics. For instance, NOCD [36]
introduces an overlapping community detection loss function
anchored on maximizing the likelihood of Bernoulli-Poisson
models [37]. Similarly, [38] devises a continuous relaxation
of the normalized minCUT problem [39], training a GNN to
infer cluster assignments that minimize this criterion. Drawing
inspiration from the modularity [40] clustering quality mea-
sure, [41] unveiled Deep Modularity Networks (DMoN) to
extract high-quality clusters. Nonetheless, it is essential to note
that these approaches inherit the limitations of the underlying
metrics they seek to optimize, resulting in cluster assignments
that are subject to the loss objective’s definition of cluster
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TABLE I
NOTATION SUMMARY.

Notation Description

G attributed graph
V, E node set and edge set
A,X adjacency matrix and attribute matrix
I,D identity matrix and diagonal degree matrix
Ã, X̃ augmented adjacency matrix and attribute matrix
Z,C node representations and cluster assignments matrix
W ,S node similarity matrix, cross-view cosine similarity matrix

fθ graph encoder with parameters θ
pd, pm intensity of edge dropping and feature masking
s, τ split cosine similarity and temperature parameter
λ, γ weights to balance the contributions of three loss items

(community).
4) Non-neural Clustering Methods: While traditional k-

means and spectral clustering [42] fail to simultaneously
utilize both graph topology and node attributes, several re-
cent non-neural approaches have addressed this limitation by
drawing inspiration from graph signal processing [43]. For
instance, AGC [44] conducts graph convolution using a low-
pass graph filter, aiming to retain low-frequency basis signals
and eliminate high-frequency ones within node attributes. SGC
[45] aggregates the information from long-range neighbors by
applying the K-th power of the normalized adjacency matrix
to better capture global cluster structures. SSGC [46] employs
the Markov diffusion kernel to incorporate larger neighbor-
hoods compared to SGC and cope better with oversmoothing.
Notably, these “non-neural” methods only propagate features
along edges without employing neural networks for feature
transformation, resulting in a representation space with the
same dimensionality as the input space. To acquire cluster
assignments, AGC utilizes spectral clustering on the learned
node similarity matrix, while SGC and SSGC apply k-means
on the representations after dimensionality reduction through
truncated singular value decomposition.

III. PRELIMINARY

A. Problem Statement

Let G = (V, E) represent an attributed graph, where
V = {v1, v2, · · · , vn} denotes the node set, and E ⊆ V × V
comprises the edge set. This graph is associated with a feature
matrix X ∈ Rn×p, where each row xi ∈ Rp corresponds
to the features of node vi. Additionally, an adjacency matrix
A ∈ {0, 1}n×n is defined, with Aij = 1 if and only if an
edge exists between nodes vi and vj .

The objective of deep graph clustering is to encode nodes
with a neural network in an unsupervised manner and then
partition them into several disjoint groups. Generally, a neural
network fθ (often GCN [17]) is initially trained without
human annotations and embeds the nodes into the latent space
by leveraging the node attributes and the graph structure:
Z = fθ (A,X). Here, Z ∈ Rn×d represents the learned node
representations. Subsequently, a clustering algorithm C, such
as k-means, spectral clustering [42], or a clustering neural
network layer [32], is employed to partition nodes into k

disjoint groups: C = C(Z), where C ∈ Rn×k denotes the
cluster membership matrix for all n nodes.

B. Graph Convolutional Network

Graph Convolutional Network (GCN) [17] is one of the
most popular graph neural networks. Mathematically, the
formulation of the graph convolutional layer can be expressed
as:

Z(l+1) = σ(D̂
−1/2

ÂD̂
−1/2

Z(l)Θ(l)), (1)

where σ is the activation function, Â = A+I signifies the ad-
jacency matrix with inserted self-loops, and D̂ii =

∑
j=0 Âij

corresponds to the diagonal degree matrix. Moreover, Z(l)

denotes the node representations of the l-th hidden layer, while
Θ(l) represents a trainable weight matrix.

C. Graph Homophily

Graph homophily suggests that connected nodes often
share the same cluster/class, which serves as valuable prior
knowledge in real-world graphs such as citation networks,
co-purchase networks, or friendship networks [16]. A well-
used metric for quantifying the homophily of a graph is
node homophily, which measures the average proportion of
neighbors with the same cluster/class as each node:

Homo =
1

|V|
∑
v∈V

|u ∈ N (v) : cv = cu|
|N (v)| , (2)

where N (v) denotes the neighbor set of node v, and cv
represents the cluster/class to which node v belongs. Table
II presents the node homophily values for eight benchmark
datasets. It is noteworthy that the node homophily surpasses
the accuracy of clustering results for all datasets (refer to Table
IV).

IV. METHODOLOGY

We first describe the framework of the proposed method.
Subsequently, we present how to learn an approximately ideal
node similarity matrix within the representation space for
clustering.

A. Model Framework

Our model simply comprises three components: 1) a random
graph augmentation generator T . 2) a GNN-based graph
encoder fθ. 3) a novel objective function aiming to learn
an approximately ideal node similarity matrix within the
representation space. Figure 2 is an illustration of the proposed
model.

1) Graph Augmentation: The augmentation of graph data
is a critical component of graph contrastive learning, as it
generates diverse graph views, resulting in more generalized
representations that are robust against variance. Following
previous works [11], [14], [15], [47], we jointly adopt two
widely utilized strategies, feature masking and edge dropping,
to enhance graph attributes and topology information, respec-
tively.
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Fig. 2. Overview of our proposed contrastive graph clustering framework NS4GC. For a given attributed graph, we first generate two distinct views via
random augmentations: edge dropping and feature masking. These two views are subsequently fed into a shared GNN encoder to extract node representations.
Then we instantiate the latent node similarity matrix using the cross-view cosine similarity. To optimize the model, we employ a combination of self-alignment
loss, node-neighbor alignment loss, and a sparsity loss applied to the estimated node similarity matrix.

Feature Masking. We randomly select a portion of the
node features’ dimensions and mask their elements with zeros.
Formally, we first sample a random vector m̃ ∈ {0, 1}F ,
where each dimension is drawn from a Bernoulli distribution
with probability 1− pm, i.e., m̃i ∼ B(1− pm),∀i. Then, the
masked node features X̃ are computed by ∥Ni=1 xi⊙m̃, where
⊙ denotes the Hadamard product and ∥ represents the stack
operation (i.e., concatenating a sequence of vectors along a
new dimension).

Edge Dropping. In addition to feature masking, we
stochastically drop a certain fraction of edges from the original
graph. Formally, since we only remove existing edges, we
first sample a random masking matrix M̃ ∈ {0, 1}N×N , with
entries drawn from a Bernoulli distribution M̃ i,j ∼ B(1−pd)

if Ai,j = 1 for the original graph, and M̃ i,j = 0 otherwise.
Here, pd represents the probability of each edge being dropped.
The corrupted adjacency matrix can then be computed as
Ã = A⊙ M̃ .

2) Encoder Training: During each training epoch, we first
select two random augmentation functions, t1 ∼ T and
t2 ∼ T , where T is composed of all the possible graph
transformation operations. Subsequently, two different views,
(Ã

1
, X̃

1
) = t1(A,X) and (Ã

2
, X̃

2
) = t2(A,X), are gen-

erated based on the sampled functions. These two augmented
views are then fed into a shared encoder fθ, which is imple-
mented using GCN [17], to extract the corresponding node
representations: Z1 = fθ(Ã

1
, X̃

1
) and Z2 = fθ(Ã

2
, X̃

2
).

We further ℓ2 normalize the node representations Z1 and Z2

to place them on the unit hypersphere, thereby the cross-view
cosine similarity matrix can be computed as S = Z1Z2⊤.
Finally, the model is optimized using a combination of self-
alignment loss, node-neighbor alignment loss, and sparsity loss
(refer to Section IV-B).

3) Node Clustering: After training, we feed the original
graph G = (A,X) into the trained encoder fθ, resulting

in node representations Z = fθ(A,X). Following previous
works [34], [9], [6], we can apply the k-means algorithm
directly to the ℓ2 normalized Z to obtain the clustering results.

B. Node Similarity Matrix Learning

We define node-wise similarity as a function that maps two
arbitrary nodes to a semantic similarity indicator. A value
of 1 implies that the two nodes belong to the same ground-
truth cluster, while a value of 0 indicates nodes from distinct
ground-truth clusters. Due to the absence of labels in the
unsupervised clustering setting, we can not obtain the ideal
node similarity matrix to guide representation learning. In this
study, we try to approximate the ideal node similarity matrix
by utilizing the cross-view consistency prior of contrastive
learning, the homophily pattern in graphs, and the semantic-
aware sparsification.

1) Self Alignment: One of the core components of con-
trastive learning is to enhance cross-view consistency, thereby
learning essential and invariant representations across multiple
views. This is based on the premise that different views of a
given node are assuredly associated with the same semantic
label. Technically, this consistency is achieved through the
alignment of distinct augmented versions of the identical node
in the representation space. In essence, it encourages the
diagonal elements of the cross-view cosine similarity matrix
S to converge towards 1. So the self-alignment loss can be
computed as:

Lali = −
n∑

i=1

Sii. (3)

2) Node-Neighbor Alignment: From Table II, Table IV,
we can find that node homophily consistently exceeds the
accuracy of clustering results for all datasets, thus providing
empirical support for the homophily assumption, i.e., nodes
exhibit a higher degree of semantic similarity with their
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neighbors. As a result, it is simple yet effective to align
nodes and their neighbors in the representation space, which
encourages the entries corresponding to node-neighbor pairs
to converge towards 1. Consequently, the computation of the
node-neighbor loss is as follows:

Lnei = −
∑

Aij=1

Sij . (4)

3) Semantic-aware Sparsification: We propose a semantic-
aware sparsification method for the remaining disconnected
node pairs, wherein edges are selectively added between
nodes with relatively higher similarity. Specifically, we use the
following differentiable equation to estimate the binary node
similarity matrix:

Ŝij = Sigmoid

(
Sij − s

τ

)
=

1

e−
Sij−s

τ + 1
, (5)

where s ∈ [0, 1] represents the split cosine similarity score,
and τ > 0 is the temperature parameter. We opt for a
relatively small temperature, such as τ = 0.1, to ensure that
Ŝij approaches values close to 1 or 0. Specifically, Ŝij ≈ 1
when Sij exceeds s by a little, and Ŝij ≈ 0 otherwise. The
differentiable node similarity matrix is expressed as Ŝ =
Sigmoid

(
S−s
τ

)
. Since the node similarity matrix is sparse

(i.e., entries corresponding to inter-cluster nodes are 0), we
introduce a ℓ1 norm sparsity penalty to Ŝij for disconnected
node pairs:

Lspa =

i ̸=j∑
Aij=0

∥ Ŝij ∥1=
i ̸=j∑

Aij=0

Sigmoid

(
Sij − s

τ

)
. (6)

Gradient Analysis. Here we show that our sparsity
penalty is adaptive and semantic-aware. The gradient of Lspa

with respect to the pairwise cosine similarity Sij is calculated
as :

∂Lspa

∂Sij
=

1/τ

e
Sij−s

τ + 2 + e−
Sij−s

τ

. (7)

The gradient magnitude can be viewed as the strength of the
sparsity penalty. Figure 3 further illustrates a plot of gradient
magnitudes ∂Lspa

∂Sij
with s = 0.5 and different τ settings over

the domain Sij ∈ [−1, 1]. We have the following observations:
1) For node pairs more likely to be semantically different,
i.e., Sij < s, the penalty becomes stronger as Sij increases.
Conversely, for more semantically similar node pairs, i.e.,
Sij > s, the penalty decreases with increasing Sij . Thus,
the sparsity penalty’s impact is notably lower on node pairs
with very high semantic similarity (e.g., Sij > 0.8) or those
already semantically different (e.g., Sij < 0.2), resulting in the
optimization process being primarily influenced by node pairs
around the split boundary. 2) As the temperature τ decreases,
the distribution of the magnitude becomes more sharp. In
other words, the sparsity penalty concentrates more on the
split boundary region than the semantically similar region as
the temperature decreases, and the sparsity penalty distribution
tends to be more uniform as the temperature increases, which
tends to give all node pairs the same magnitude of penalties.
This is different from the InfoNCE [27] objective used in
node-node contrastive methods [11], [13], [28], as InfoNCE

−1.0 −0.5 0.0 0.5 1.0
Sij

0.0

0.5

1.0

1.5

2.0

2.5

∂
L s
p
a

∂
S
ij

τ = 0.1

τ = 0.2

τ = 0.5

τ = 1.0

Fig. 3. ∂Lspa

∂Sij
with s = 0.5 and different τ settings.

penalizes more heavily for similar node pairs, potentially
disrupting the underlying semantic structure [48].

4) Overall Objective: The estimation of the node similarity
matrix is expressed as Ŝ = Sigmoid

(
S−s
τ

)
. Optimized

by the self-alignment, the node-neighbor alignment, and the
semantic-aware sparsification, the acquired node similarity
matrix is expected to be reliable and appropriately sparse.
Therefore, we formulate the overall objective as follows:

L = Lali + λLnei + γLspa, (8)

where λ and γ serve as weights that balance the contributions
of three terms Lali, Lnei and Lspa. Notably, we compute the
mean, rather than the sum, of the elements within these terms
in our implementation, which can result in nearly constant
values for λ and γ across various datasets (as shown in Section
V-A4). To elucidate our method comprehensively, we present
both a standard pseudocode in Algorithm 1 and its PyTorch-
style counterpart in Algorithm 2.

Algorithm 1 The overall procedure of NS4GC
Input: Input graph G = (A,X); Hyperparameters λ, γ, s, τ, T, T .

Output: The clustering result C.

1: for i = 1 to T do
2: Sample two augmentation functions t1 ∼ T and t2 ∼ T ;
3: Generate two augmented graphs via (Ã

1
, X̃

1
) = t1(A,X)

and (Ã
2
, X̃

2
) = t2(A,X);

4: Obtain ℓ2 normalized node representations Z1 and Z2 using
the same encoder fθ;

5: Compute the cross-view cosine similarity matrix S with
Z1Z2⊤;

6: Compute the self-alignment loss via Eq. (3);
7: Compute the node-neighbor alignment loss via Eq. (4);
8: Compute the semantic-aware sparsity loss via Eq. (6);
9: Update the parameters of fθ by minimizing Eq. (8).

10: end for
11: Perform k-means on ℓ2 normalized Z to obtain the final cluster

assignments C.
12: return C
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Algorithm 2 PyTorch-style pseudocode for NS4GC

# epochs
# s: split point
# tau: temperature
# lambda, gamma: trade-off

# X: node features
# A: adjacency matrix
# GNN: encoder $f_\theta$
# optimizer: Adam optimizer

# Get indices of connected nodes
E = A._indices()
# Get masks of disconnected nodes
mask = torch.full_like(A, True)
mask[E] = False
mask.fill_diagonal_(False) # excluding self-loops

# Pre-train
for _ in range(epochs):

# generate two views through random augmentation
A1, X1 = augment(A, X)
A2, X2 = augment(A, X)

# obtain l2-normalized representations
Z1 = normalize(GNN(A1, X1))
Z2 = normalize(GNN(A2, X2))

# compute the cosine similarity matrix
S = Z1 @ Z2.T

# compute self-alignment loss
loss_ali = - torch.diag(S).mean()

# compute node-neighbor alignment loss
loss_nei = - S[E].mean()

# compute semantic-aware sparsity loss
S = torch.masked_select(S, mask)
loss_spa = torch.sigmoid((S - s) / tau).mean()

loss = loss_ali + lambda*loss_nei + gamma*loss_spa

# optimization step
loss.backward()
optimizer.step()

# Clustering
Z = GNN(A, X)
return KMeans(Z)

V. EXPERIMENTS

In this section, we design the experiments to evaluate our
proposed NS4GC and answer the following research questions.
RQ1: Does NS4GC outperform existing baseline methods on
node clustering? RQ2: Can NS4GC learn more ideal node
similarity matrix? RQ3: How does each loss component affect
the clustering performance? RQ4: How do the parameters
affect NS4GC?

A. Experiment Setup

1) Datasets: We evaluate our method on eight real-word
datasets: Cora, Citeseer, Pubmed, CoraFull, WikiCS, Photo,
Computer, and CoauthorCS. The detailed statistics are sum-
marized in Table II, and brief introductions are as follows:

• Cora, Citeseer, Pubmed [17] and CoraFull [49] are four
well-known citation network datasets, in which nodes
represent publications and edges indicate their citations.
All nodes are labeled based on the respective paper
subjects.

TABLE II
DATASET STATISTICS.

Dataset Type #Nodes #Edges #Features #Clusters Homo

Cora citation 2,708 10,556 1,433 7 82.52%
Citeseer citation 3,327 9,228 3,703 6 72.22%
Pubmed citation 19,717 88,651 500 3 79.24%
CoraFull citation 19,793 126,842 8,710 70 58.61%
WikiCS reference 11,701 431,726 300 10 65.88%
Photo co-purchase 7,650 238,163 745 8 83.65%
Computer co-purchase 13,752 491,722 767 10 78.53%
CoauthorCS co-authorship 18,333 163,788 6,805 15 83.20%

• WikiCS [50] is a reference network constructed from
Wikipedia. It comprises nodes corresponding to articles
in the field of Computer Science, where edges are derived
from hyperlinks. The dataset includes 10 distinct classes
representing various branches within the field. The node
features are computed as the average GloVe word em-
beddings of the respective articles.

• Photo and Computer [51] are networks constructed
from Amazon’s co-purchase relationships. Nodes rep-
resent goods, and edges indicate frequent co-purchases
between goods. The node features are represented by bag-
of-words encoding of product reviews, and class labels
are assigned based on the respective product categories.

• CoauthorCS [51] is a co-authorship network based on
the Microsoft Academic Graph. Here, nodes are authors,
that are connected by an edge if they co-authored a paper;
node features represent paper keywords for each author’s
papers, and class labels indicate the most active fields of
study for each author.

2) Baselines: To verify the effectiveness of our proposed
model, our evaluation includes a comprehensive comparison of
NS4GC with fifteen baseline methods. These include one tradi-
tional clustering method, k-means; one community clustering
method, DMoN [41]; one non-neural clustering method, SSGC
[46]; four GAE-based clustering methods, VGAE [3], DAEGC
[31], GNAE [30], and EGAE [34]; eight GCL-based clustering
methods, DGI [4], MVGRL [8], GRACE [11], gCooL [28],
CCASSG [14], BGRL [15], SCGC [9], and CCGC [6].

3) Evaluation Protocols: We initiate the training by mini-
mizing Eq. (8). The derived representations are then fed into
a k-means model for node clustering [34], [9], [6]. Given
the inherent randomness, we conduct the experiment twenty
times across all comparison methods, reporting average values
accompanied by their standard deviations. Four prevalent
metrics, namely NMI, ARI, ACC, and F1 [31], [6], [9], are
employed for evaluation.

4) Implementation Details: We employ the official imple-
mentations from GitHub for the baseline methods and develop
NS4GC using PyTorch. The baseline results are either taken
from the original paper or obtained using official codes when
there are no corresponding dataset results in the original paper.
All experiments are executed on an NVIDIA GeForce RTX
3090 GPU with 24 GB of memory. The graph encoder fθ
is specified as a standard two-layer GCN model [17] for



8

TABLE III
HYPEPARAMETER SPECIFICATIONS.

Dataset pd1, pd2, pm1, pm2 s, τ #hid units #epochs

Cora 0.3, 0.3, 0.2, 0.2 0.6, 0.1 256-64 200
Citeseer 0.6, 0.8, 0.0, 0.4 0.5, 0.1 256 50
Pubmed 0.2, 0.6, 0.1, 0.0 0.6, 0.1 256-256 200
CoraFul 0.2, 0.4, 0.0, 0.2 0.6, 0.1 256-64 200
WikiCS 0.0, 0.6, 0.1, 0.0 0.5, 0.1 256-256 500
Photo 0.8, 0.8, 0.0, 0.0 0.6, 0.1 256-128 200
Computer 0.6, 0.8, 0.0, 0.1 0.6, 0.1 256-128 400
CoauthorCS 0.1, 0.3, 0.0, 0.7 0.4, 0.08 256-64 200

all datasets, with the exception of Citeseer, where empirical
findings indicate that a one-layer GCN is more effective. The
trade-off values, λ and γ, are uniformly set to 1. During
training, we employ the Adam SGD optimizer [52] with a
learning rate and weight decay of (1e − 2, 1e − 6) for the
Computer dataset and (1e − 3, 1e − 5) for the remaining
datasets. Notably, we leverage the processed versions of all
datasets as provided by the Deep Graph Library [53]. And
the number of clusters is pre-defined as the number of ground
truth classes [31], [34], [9], [6]. For a comprehensive overview
of dataset-specific hyperparameters, please refer to Table III.

B. Clustering Performance (RQ1)

The clustering performance of all compared methods across
eight datasets is presented in Table IV, where bold and under-
lined values indicate the best and the runner-up results, respec-
tively. Our proposed NS4GC achieves state-of-the-art perfor-
mance, substantially improving the performance benchmark
set by contrastive graph clustering methods. For instance, on
the CoauthorCS dataset, our method outperforms the runner-
up by 2.32%, 9.88%, 5.93%, and 4.81% with respect to NMI,
ARI, ACC, and F1. The superior performance of our method
can be attributed to two factors: 1) the contrastive mechanism
enables the network to capture more supervision information
from multiple views, leading GCL-based clustering methods to
generally outperform GAE-based methods. 2) Its cutting-edge
objective, aiming to learn the approximately ideal node sim-
ilarity matrix, ensures representations of semantically similar
nodes are positioned closely within the representation space,
resulting in clustering-friendly representations.

It is noteworthy that both GRACE and CCASSG adopt the
same network architecture as NS4GC, differing primarily in
the constraints imposed on the node similarity matrix within
the representation space. Specifically, GRACE implicitly as-
sumes the node similarity matrix to be an identity matrix,
CCASSG does not exploit the sparsity of this matrix, while
NS4GC incorporates a novel semantic-aware sparsification.
The superior performance of NS4GC substantiates the efficacy
of this proposed semantic-aware sparsification. Moreover, in
comparison to gCooL, which integrates community/cluster
detection for learning cluster-wise similarity, and CCGC,
which incorporates a time-consuming k-means at each epoch
to construct true positive samples and hard negative samples by
mining high-confidence clustering information, NS4GC also

demonstrates superior performance, providing empirical evi-
dence of the effectiveness of simple node-neighbor alignment
for homophilic graphs.

(a) GRACE (b) CCASSG

(c) NS4GC (d) Ideal

Fig. 4. Node similarity matrices learned by GRACE, CCASSG, and NS4GC
and the ideal node similarity matrix on Photo.

C. Visualization of Node Similarity Matrix (RQ2)

To gain visual insights into our method, we present visual-
izations illustrating the cosine similarity matrix (following the
sparsification defined in Eq. (5) with s = 0.6 and τ = 0.1)
of the representations learned by GRACE, CCASSG, and
NS4GC using the Photo dataset. As depicted in Figure 4,
several observations emerge: 1) A conspicuous block-diagonal
structure is evident in these node similarity matrices. 2) The
off-diagonal elements of CCASSG’s node similarity matrix
show a significant increase compared to GRACE and NS4GC,
due to its absence of explicit constraints on off-diagonal
elements. 3) While the node similarity matrices of GRACE
and our method share a similar sparse structure, our diagonal
blocks exhibit a deeper color, and non-diagonal-block areas
appear slightly lighter, demonstrating the role of the proposed
node-neighbor alignment and a semantic-aware sparsification.
4) The node similarity matrix learned by NS4GC exhibits
higher similarity to the ideal node similarity matrix.

D. Comparison of Node Similarity Matrix (RQ2)

Here we further quantitatively assess disparities between
the node similarity matrices obtained from various contrastive
graph clustering methods and the ideal node similarity matrix.
Specifically, considering the one-hot ground-truth cluster la-
bels C assigned to all nodes, we compute the ideal node simi-
larity matrix as N = CC⊤. Using the cosine similarity matrix
S derived from the learned node representations Z, we softly
estimate the learned node similarity matrix W with Eq. (5),
i.e., W = Sigmoid ((S − s)/0.1). To gauge the dissimilarity,
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TABLE IV
OVERALL PERFORMANCE OF GRAPH CLUSTERING ON EIGHT DATASETS MEASURED BY ARI, NMI, ACC, AND F1 SCORES IN PERCENTAGE.

Method Metric Cora Citeseer Pubmed CoraFull WikiCS Photo Computer CoauthorCS Rank

k-means
NMI 15.44±3.83 20.66±2.83 31.34±0.15 34.52±0.76 25.16±0.31 32.61±0.38 24.26±0.45 66.36±0.70 14.8
ARI 9.49±2.01 16.80±3.02 28.12±0.03 9.03±0.62 14.50±0.34 20.66±0.91 9.36±0.42 54.47±2.28 14.8
ACC 34.07±3.21 43.78±3.60 60.11±0.03 25.61±1.12 33.90±1.09 41.52±0.71 26.30±0.48 60.13±2.64 15.9
F1 31.39±4.29 41.43±3.72 59.23±0.08 11.39±0.58 30.17±1.30 40.92±1.61 21.16±0.37 52.26±2.84 15.9

DMoN
NMI 49.37±0.57 32.19±0.39 29.33±0.67 52.57±0.68 40.14±0.76 62.09±0.45 48.32±0.78 70.59±0.24 13.5
ARI 38.91±0.54 32.47±0.41 27.30±0.51 24.16±0.63 29.90±0.62 51.77±0.52 26.92±0.81 55.59±0.39 13.1
ACC 62.64±0.48 57.59±0.67 66.42±0.46 35.25±0.96 44.54±0.82 70.04±0.63 37.52±0.71 63.74±0.54 13.4
F1 57.67±0.45 53.53±0.59 62.69±0.33 28.25±0.92 36.37±0.78 59.87±0.66 26.85±0.90 53.87±0.65 14.4

SSGC
NMI 54.32±1.92 42.97±0.08 32.27±0.01 56.41±0.18 43.67±0.06 66.44±0.96 52.05±0.73 72.19±0.41 6.4
ARI 46.27±4.01 43.54±0.15 31.06±0.01 29.89±0.89 33.35±0.07 51.65±2.40 38.29±1.03 61.58±1.00 7.1
ACC 69.28±3.70 68.23±0.18 68.61±0.01 41.46±1.25 54.81±0.07 68.71±3.06 55.21±0.49 69.68±1.23 6.3
F1 64.70±5.53 64.16±0.13 68.22±0.01 34.57±1.10 44.88±0.10 61.96±3.52 42.49±2.73 64.99±2.19 6.3

VGAE
NMI 52.48±1.33 34.46±0.92 27.16±1.45 49.17±0.17 43.64±0.75 67.36±1.58 50.50±1.26 68.49±1.11 11.4
ARI 43.99±2.34 32.65±0.92 26.32±1.15 19.80±0.44 32.97±0.90 57.00±2.55 30.61±2.16 50.64±3.12 12.9
ACC 64.54±1.98 59.97±0.72 66.08±0.71 31.23±0.58 49.69±0.66 73.66±2.27 46.08±1.81 61.80±1.69 13.0
F1 64.50±1.37 57.29±0.59 64.85±0.80 25.81±0.54 42.03±0.67 69.94±1.87 40.31±4.01 53.67±1.15 12.4

DAEGC
NMI 52.89±0.69 39.41±0.86 28.26±0.03 49.16±0.73 41.89±0.60 65.57±0.03 50.87±1.45 70.52±1.23 11.5
ARI 49.63±0.43 40.78±1.24 29.84±0.04 22.60±0.47 33.24±1.50 59.39±0.02 31.82±2.34 54.23±2.94 9.5
ACC 70.43±0.36 67.54±1.39 68.73±0.03 34.35±1.00 51.92±1.06 76.44±0.01 49.22±1.56 64.22±1.88 9.0
F1 68.27±0.57 62.20±1.32 68.23±0.02 26.96±1.33 42.09±0.71 69.97±0.02 42.45±3.43 59.02±2.42 9.1

GNAE
NMI 54.20±0.60 33.93±0.02 30.56±0.17 54.42±0.23 43.33±0.50 68.96±0.00 50.22±0.75 73.81±0.68 8.1
ARI 47.74±1.66 33.00±0.02 31.00±0.15 27.14±0.83 34.69±0.48 58.83±0.00 34.45±0.65 57.71±1.13 7.9
ACC 69.12±1.50 58.96±0.03 69.03±0.09 39.43±1.12 52.30±0.33 77.10±0.00 53.74±0.63 65.62±2.36 7.4
F1 68.67±1.13 54.96±0.03 67.94±0.11 30.82±1.07 43.58±0.41 70.81±0.00 42.97±0.77 61.14±4.13 7.3

EGAE
NMI 52.83±0.78 38.69±1.76 32.24±0.18 53.92±1.01 42.36±1.05 61.77±1.42 52.25±0.62 71.18±0.98 9.9
ARI 50.32±0.73 40.51±2.76 32.67±0.09 27.18±0.76 30.26±1.02 50.43±8.35 36.69±0.71 53.98±0.82 8.9
ACC 72.86±0.46 66.21±1.89 68.98±0.21 39.97±0.87 48.73±1.67 73.67±0.79 53.12±0.35 63.67±1.37 8.3
F1 68.67±0.58 61.03±2.32 67.69±0.14 28.52±0.77 41.92±1.04 69.30±0.76 41.52±0.46 60.80±1.26 9.5

DGI
NMI 55.82±0.60 41.16±0.54 25.27±0.02 54.61±0.27 43.75±0.25 64.79±0.42 51.30±0.86 75.18±0.70 7.8
ARI 48.91±1.42 39.78±0.74 24.06±0.03 25.26±0.43 33.64±0.63 56.19±0.70 39.70±1.09 63.39±1.99 8.6
ACC 70.89±1.05 63.31±1.20 65.01±0.02 36.52±0.56 51.54±0.82 75.78±0.67 54.36±1.20 70.77±2.56 8.1
F1 68.37±1.44 60.00±1.83 65.38±0.02 31.58±0.63 44.13±1.71 70.52±1.16 39.95±1.52 68.87±3.86 7.8

MVGRL
NMI 56.30±0.27 43.47±0.08 27.07±0.00 52.81±0.22 39.22±0.13 62.16±0.71 50.07±0.51 75.15±0.61 10.0
ARI 50.28±0.40 44.09±0.09 24.53±0.00 23.47±0.54 28.08±0.17 48.71±1.64 37.10±2.05 63.26±1.03 10.1
ACC 72.03±0.17 68.03±0.06 64.11±0.00 35.18±0.84 45.26±0.18 70.54±0.66 53.22±1.13 69.15±2.19 9.9
F1 68.36±0.53 63.66±0.04 64.96±0.00 29.92±0.74 40.28±0.15 64.58±0.93 38.38±0.40 64.02±3.52 10.1

GRACE
NMI 51.98±0.24 39.07±0.07 22.44±0.02 54.27±0.18 44.69±0.23 66.62±0.02 52.33±0.91 72.58±0.26 8.9
ARI 46.20±0.53 40.38±0.08 15.62±0.01 25.90±0.53 32.72±0.70 57.01±0.07 34.18±2.59 55.62±0.47 10.8
ACC 68.28±0.30 65.83±0.06 56.30±0.01 37.38±0.82 50.82±1.99 74.87±0.05 50.62±1.97 63.64±1.48 11.3
F1 65.67±0.44 62.59±0.05 56.40±0.01 32.41±0.76 43.31±2.25 70.58±0.03 41.14±2.50 60.23±2.76 9.3

gCooL
NMI 50.25±1.08 41.67±0.41 33.14±0.02 54.21±0.39 46.94±0.03 65.32±0.15 45.67±0.84 73.90±1.13 7.8
ARI 44.95±1.74 42.66±0.47 31.93±0.01 25.52±0.68 38.33±0.02 56.98±0.13 38.62±0.36 59.43±3.15 6.8
ACC 67.40±1.43 66.98±0.32 69.97±0.02 38.93±0.96 53.64±0.23 75.97±0.01 50.09±1.10 66.19±3.14 7.4
F1 65.50±1.17 63.23±0.33 68.90±0.03 32.42±1.01 45.04±0.07 73.10±0.14 30.10±1.07 61.00±4.17 6.5

CCASSG
NMI 56.51±1.49 43.69±0.24 29.61±0.01 55.17±0.19 45.35±0.07 63.89±0.02 52.32±0.41 72.43±0.42 6.1
ARI 50.77±3.39 44.26±0.23 25.81±0.01 27.37±0.57 36.65±0.04 54.70±0.01 40.88±0.24 59.01±1.94 6.3
ACC 71.89±2.52 69.26±0.20 64.49±0.01 38.01±0.59 53.84±0.03 74.03±0.02 53.43±0.03 65.83±1.15 7.5
F1 70.98±1.65 63.87±0.21 63.96±0.01 31.42±0.63 43.19±0.02 67.74±0.02 42.99±0.46 57.18±1.76 7.8

BGRL
NMI 55.46±0.81 41.43±1.26 30.05±0.02 54.40±0.37 46.54±0.40 67.13±0.71 54.87±0.26 76.31±0.54 5.4
ARI 50.75±1.68 38.70±1.90 27.32±0.01 24.13±0.65 37.44±1.35 57.59±0.65 34.62±1.51 66.04±1.53 7.3
ACC 71.69±1.59 65.59±1.17 65.84±0.00 38.02±0.89 53.47±1.55 75.67±0.59 49.30±1.28 72.70±1.81 8.0
F1 69.87±1.67 59.67±2.15 65.61±0.00 33.52±0.84 44.79±1.34 70.55±0.36 42.72±1.05 67.40±3.17 6.0

SCGC
NMI 56.10±0.72 45.25±0.45 31.17±0.81 53.00±0.29 42.74±1.07 67.67±0.88 51.01±0.89 70.21±0.80 7.5
ARI 51.79±1.59 46.29±1.13 29.23±0.55 24.23±0.86 35.96±1.10 58.48±0.72 34.39±0.73 60.43±0.55 6.1
ACC 73.88±0.88 71.02±0.77 68.66±0.45 41.89±0.47 50.53±1.03 77.48±0.37 51.76±1.05 69.18±0.55 4.9
F1 70.81±1.96 64.80±1.01 68.05±0.31 32.98±0.73 40.34±0.95 72.22±0.97 39.03±1.65 62.76±1.21 6.4

CCGC
NMI 56.45±1.04 44.33±0.79 32.10±0.23 52.88±0.23 42.24±1.37 67.44±0.48 53.79±0.59 73.51±0.56 6.0
ARI 52.51±1.89 45.68±1.80 30.83±0.41 27.02±0.49 35.64±0.03 54.78±0.04 39.84±0.75 63.93±0.35 4.9
ACC 73.88±1.20 69.84±0.94 68.78±0.56 39.69±0.49 49.61±1.49 77.25±0.41 54.70±0.81 70.16±0.88 4.6
F1 70.98±2.79 62.71±2.06 68.35±0.71 26.98±0.73 41.12±1.26 72.18±0.57 42.09±0.74 67.63±0.71 6.5

NS4GC
NMI 60.34±0.09 45.37±0.08 32.76±0.01 57.09±0.17 48.23±0.32 72.55±0.02 57.29±0.00 78.63±0.90 1.1
ARI 58.00±0.46 46.08±0.08 33.50±0.01 30.42±0.65 40.39±1.40 62.58±0.02 44.56±0.00 75.92±3.68 1.1
ACC 76.33±0.15 69.70±0.03 70.56±0.01 42.12±0.56 57.39±1.89 79.38±0.01 58.21±0.00 78.63±2.22 1.3
F1 74.23±0.08 65.08±0.08 69.49±0.01 34.84±0.63 49.98±2.35 73.33±0.01 48.58±0.00 73.68±3.83 1.0
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TABLE V
ABLATION STUDY OF NODE CLUSTERING PERFORMANCE ON THE KEY COMPONENTS OF NS4GC (IN PERCENTAGE).

Lali Lnei Lspa
Cora WikiCS Photo CoauthorCS

ACC NMI ACC NMI ACC NMI ACC NMI
✓ ✓ 53.73±2.51 35.92±1.31 53.32±3.45 42.66±2.12 65.46±5.23 59.74±2.77 65.14±1.88 71.84±0.53
✓ ✓ 71.60±3.36 55.87±2.85 48.12±2.36 44.70±0.68 71.81±1.95 68.99±0.83 75.09±1.00 76.72±0.41

✓ ✓ 74.83±2.22 58.33±1.37 51.18±0.45 45.60±0.26 76.06±0.01 66.90±0.01 65.77±1.97 71.60±0.42
✓ ✓ ✓ 76.33±0.15 60.34±0.09 57.39±1.89 48.23±0.32 79.38±0.01 72.55±0.02 78.63±2.22 78.63±0.90

TABLE VI
COMPARISON BETWEEN THE LEARNED NODE SIMILARITY MATRICES AND

THE IDEAL NODE SIMILARITY MATRIX (IN PERCENTAGE).

Dataset Cora WikiCS Photo CoauthorCS
Metric MAE ACC MAE ACC MAE ACC MAE ACC
DGI 19.74 84.13 15.38 86.54 16.03 87.92 7.96 94.71
GRACE 21.55 82.92 14.08 86.66 11.78 89.91 8.35 93.02
CCASSG 17.18 84.35 15.66 86.41 15.88 88.75 8.90 92.66
BGRL 20.90 83.61 15.62 85.22 18.68 82.57 13.20 88.66
CCGC 45.87 82.11 18.12 84.47 37.03 86.77 18.97 91.51
NS4GC 15.65 85.26 13.83 87.17 11.12 90.53 4.76 96.28

we employ the mean absolute error (MAE) between W and
N , i.e., MAE = 1

n2

∑
i

∑
j |M ij − N ij |. Additionally, we

explore binarizing the cosine similarity matrix S to form the
learned node similarity matrix, expressed as W = I(S ≥ s),
where I(·) denotes the indicator function. And we use the
accuracy as our metric, i.e., ACC = 1

n2

∑
i

∑
j I(W ij =

N ij). To ensure fairness in comparison, we search for the
optimal split value s from the set {0.6, 0.7, 0.8, 0.9, 0.95} for
each method and dataset. The results presented in Table V-C
demonstrate the consistent learning of the most similar node
similarity matrix to the ideal node similarity matrix by our
proposed method.

E. Ablation Study (RQ3)

To systematically assess the impact of each loss component,
we conduct ablation studies on the Cora, WikiCS, Photo, and
CoauthorCS datasets, involving different combinations of the
self-alignment Lali, the node-neighbor alignment Lnei, and
the semantic-aware sparsification Lspa. The results are collated
in Table V, revealing the following key observations: 1)
Solely utilizing the self-alignment loss and the node-neighbor
alignment loss resulted in all node representations converging
towards uniformity, leading to suboptimal performance. 2)
The introduction of the semantic-aware sparsification term
had a notable positive impact on performance by alleviating
representation collapse. 3) By integrating all these loss terms,
our model is guided by an approximately ideal node similarity
matrix, yielding significant performance enhancements. For
example, on the Cora dataset, NS4GC improves ACC by about
23% , and NMI by about 25%. These results highlight the ef-
fectiveness of incorporating the node-neighbor alignment and
the semantic-aware sparsification to learn clustering-friendly
node representations.
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Fig. 5. Impact of the split value s on Cora, WikiCS, Photo and CoauthorCS.

F. Hyperparameter Analysis (RQ4)

In this subsection, we analyze the sensitivity of NS4GC
with respect to the hyperparameters: the split value s, the
temperature τ , the trade-off (λ, γ), and the augmentation
intensity (pd, pm).

Impact of the split value s. We investigate the impact of the
split cosine similarity score s on NS4SC. Figure 5 illustrates
the ACC and NMI metrics for four datasets across a range of s
values, spanning from 0.0 to 0.9. Since too small/large s would
lead to an under-sparse/over-sparse node similarity matrix
within the representation space, we recommend selecting a
split value in the vicinity of 0.5, such as 0.6, for new datasets.

Impact of the temperature τ . We further explore the
impact of the temperature τ on NS4GC. Figure 6 illustrates the
ACC and NMI metrics for four datasets across different val-
ues of τ = {0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5}.
Notably,a value that is too small (e.g., 0.01) leads to vanishing
gradients in the sigmoid activation in the Eq. 6, while a too
large τ (e.g., 0.5) fails to enforce ŵij to be binary. And it is
observed that setting τ to 0.1 is sufficient for all datasets.

Impact of the trade-off λ. We additionally investigate the
impact of the intensity of the node-neighbor alignment term on
performance by varying the trade-off hyperparameter λ from
0.0 to 2.0 in increments of 0.2. Figure 7 visually presents the
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Fig. 6. Impact of the temperature τ on Cora, WikiCS, Photo and CoauthorCS.

ACC and NMI metrics on Cora, WikiCS, Photo, and Coau-
thorCS. It is observed that, initially, increasing the intensity
of the node-neighbor alignment term improves performance,
but excessive intensity results in a performance decline. In
general, NS4GC exhibits robustness to variations in λ. And
we recommend selecting a λ value of 1 for all datasets.
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Fig. 7. Impact of the trade-off λ on Cora, WikiCS, Photo and CoauthorCS.

Impact of the trade-off γ. We also investigate the impact
of the intensity of the sparsity penalty term on performance
by varying the trade-off hyperparameter γ from 0.0 to 2.0
in increments of 0.2. Figure 8 visually presents the ACC
and NMI metrics for four datasets. It is evident that neither
extremely small nor excessively large values of γ yield optimal

performance. This observation supports the advantage of our
proposed NSGC over GRACE and CCASSG, as these methods
can be seen as extreme examples that employ the sparsity
penalty on all non-diagonal elements with either a overly large
γ or a very small γ, resulting in under-sparse or over-sparse
node similarity matrices. In contrast, by carefully selecting an
appropriate value of γ, such as 1, our proposed NS4GC can
learn an approximately ideal node similarity matrix within
the representation space, thereby achieving more clustering-
friendly representations.
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Fig. 8. Impact of the trade-off γ on Cora, WikiCS, Photo and CoauthorCS.

Impact of the augmentation intensity pd and pm. We
additionally investigate the impact of augmentation intensity,
specifically pd1, pd2, pm1, pm2, on node clustering. Our exper-
iments encompass Cora, Citeseer, and Photo datasets, with
variations of these parameters from 0.0 to 0.9. To simplify
visualization, we set pd1 = pd2 and pm1 = pm2. All
other hyperparameters remain consistent with the previously
described settings. The results, depicted in Figure 9, indicate
that our method is more sensitive to augmentation in features
compared to that in graph structure. Overall, our method
exhibits robustness to augmentation intensity: by maintaining
the feature masking ratio and the edge dropping ratio within
the appropriate range, our method achieves impressive and
competitive performance. However, it is still very important to
select a proper augmentation intensity as well as augmentation
method to learn more clustering-friendly representations.

VI. CONCLUSION

In this work, we explore contrastive graph clustering from
the perspective of the node similarity matrix, recognizing the
fundamental role of similarity measures in clustering. Our
analysis reveals that current contrastive graph clustering meth-
ods inadequately explore node-wise similarity. They either
assume the node similarity matrix within the representation
space to be an identity matrix or lack explicit constraints on
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Fig. 9. Impact of different augmentation intensity on Cora, Citeseer and
Photo.

off-diagonal entries, potentially leading to collapsed represen-
tations. To address these shortcomings, we propose NS4GC,
a novel framework that employs a node-neighbor alignment
and a semantic-aware sparsification to construct an approx-
imately ideal node similarity matrix. This matrix ensures
representations of semantically similar nodes are positioned
closely within the representation space, resulting in clustering-
friendly representations. Extensive experiments conducted on
eight benchmark datasets demonstrate the effectiveness of our
proposed method.
Limitations. We note that the proposed method NS4GC has a
limitation during deployment, which relies on the assumption
about the underlying graph structure and cluster distribution.
Namely, homophilous graphs (i.e., the connected nodes are
more likely to belong to the same cluster) are more suited to
NS4GC. However, if the graph is non-homophily, using the
node-neighbor alignment to encourage two connected nodes
similar may not help node clustering.
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